Espaces vectoriels, et applications linéaires

Exercice 1.

Soit E un \mathbb{R} -espace vectoriel.

On munit le produit cartésien $E \times E$ de l'addition usuelle

$$(x,y)+(x',y')=(x+x',y+y')$$

et de la multiplication externe par les complexes définie par

$$(a+i.b).(x,y) = (a.x-b.y, a.y + b.x)$$

Montrer que $E \times E$ est alors un \mathbb{C} -espace vectoriel.

Celui-ci est appelé complexifié de *E*.

Exercice 2.

Déterminer lesquels des ensembles E_1 , E_2 , E_3 et E_4 sont des sous-espaces vectoriels de \mathbb{R}^3 .

$$E_1 = \{(x, y, z) \in \mathbb{R}^3 \mid 3x - 7y = z\}$$

$$E_2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 - z^2 = 0\}$$

$$E_2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 - z^2 = 0\}$$

$$E_3 = \{(x, y, z) \in \mathbb{R}^3 \mid x + y - z = x + y + z = 0\}$$

$$E_4 = \{(x, y, z) \in \mathbb{R}^3 \mid z(x^2 + y^2) = 0\}$$

$$E_4 = \{(x, y, z) \in \mathbb{R}^3 \mid z(x^2 + y^2) = 0\}$$

indication: E_2 n'est pas un sous ev car $(1,0,-1)+(1,0,1) \notin E_2$, et de même pour E_4 .

Exercice 3.

Dire si les objets suivants sont des espaces vectoriels :

- 1. L'ensemble des fonctions réelles sur [0, 1], continues, positives ou nulles, pour l'addition et le produit par un réel.
- 2. L'ensemble des fonctions réelles sur R vérifiant $\lim_{x \to +\infty} f(x) = 0$ pour les mêmes opérations.
- 3. L'ensemble des solutions (x_1, x_2, x_3) du système : $\begin{cases} 2x_1 x_2 + x_3 &= 0 \\ x_1 4x_2 + 7x_3 &= 0 \\ x_1 + 3x_2 6x_3 &= 0. \end{cases}$
- 4. L'ensemble des fonctions continues sur [0, 1] vérifiant f(1/2) = 0.
- 5. L'ensemble \mathbb{R}^*_+ pour les opérations $x \oplus y = xy$ et $\lambda \cdot x = x^{\lambda}$, $(\lambda \in \mathbb{R})$.
- 6. L'ensemble des fonctions impaires sur \mathbb{R} .
- 7. L'ensemble des fonctions sur \mathbb{R} qui sont nulle en 1 ou nulle en 4.
- 8. L'ensemble des fonctions sur ℝ qui peuvent s'écrire comme somme d'une fonction nulle en 1 et d'une fonction nulle en 4. Identifier cet ensemble.
- 9. L'ensemble des polynômes de degré exactement n.
- 10. L'ensemble des fonctions de classe C^2 vérifiant $f'' + \omega^2 f = 0$.
- 11. L'ensemble des fonctions sur \mathbb{R} telles que f(3) = 7.
- 12. L'ensemble des primitives de la fonction xe^x sur \mathbb{R} .
- 13. L'ensemble des nombres complexes d'argument $\pi/4 + k\pi$, $(k \in \mathbb{Z})$.
- 14. L'ensemble des points (x, y) de \mathbb{R}^2 , vérifiant $\sin(x + y) = 0$.
- 15. L'ensemble des vecteurs (x, y, z) de \mathbb{R}^3 orthogonaux au vecteur (-1, 3, -2).
- 16. L'ensemble des polynômes ne comportant pas de terme de degré 7.
- 17. L'ensemble des fonctions paires sur \mathbb{R} .

Exercice 4.

Les parties suivantes sont-elles des sous-espaces vectoriels de $\mathbb{R}^{\mathbb{N}}$?

- 1. $\{(u_n) \in \mathbb{R}^{\mathbb{N}} \mid (u_n) \text{ bornée} \}$
- 2. $\{(u_n) \in \mathbb{R}^{\mathbb{N}} \mid (u_n) \text{ monotone}\}$ Réponse : non, pour cela remarquer que toute suite est la somme d'une suite croissante et d'une suite décroissante, puis conclure.
- 3. $\{(u_n) \in \mathbb{R}^{\mathbb{N}} \mid (u_n) \text{ convergente}\}$
- 4. $\{(u_n) \in \mathbb{R}^{\mathbb{N}} \mid (u_n) \text{ arithmétique} \}$

Exercice 5.

Montrer que l'ensemble des suites $(x_n)_{n\in\mathbb{N}}$ réelles telles que $(|x_n|^{1/n})_{n\in\mathbb{N}^*}$ soit bornée est un sous espace vectoriel de l'espace de toutes les suites.

Exercice 6.

Montrer que les parties de $\mathcal{F}([a;b],\mathbb{R})$ suivantes sont des sous-espaces vectoriels :

1.
$$F = \{ f \in \mathscr{C}^1([a;b],\mathbb{R}) \mid f'(a) = f'(b) \}$$

2.
$$G = \left\{ f \in \mathscr{C}^0([a;b],\mathbb{R}) \mid \int_a^b f(t)dt = 0 \right\}$$

Exercice 7.

Pour tout $k \in [1, n]$ on pose :

$$u_k = (k, k-1, ..., 2, 1, 0, ..., 0) \in \mathbb{R}^n$$

Montrer que la famille $(u_1, ..., u_n)$ est une base de \mathbb{R}^n

Exercice 8.

Exercice 9.

Montrer, pour tout $n \in \mathbb{N}^*$, que la famille $(x \mapsto \sin kx)_{1 \le k \le n}$ est une famille libre de $C^0(\mathbb{R}, \mathbb{R})$.

Exercice 10.

Soit $E = \mathbb{R}[X]$ et considérons un polynôme $Q \in E$ non nul. Posons :

$$F = \{P \in E \mid Q \text{ diviseP }\}$$

Montrer que F est un sous-espace vectoriel de E . puis déterminer un supplémentaire G de F et donnez-en une base.

Exercice 11.

Dans \mathbb{R}^3 , on considère x = (1, -1, 1) et y = (0, 1, a) où $a \in \mathbb{R}$.

Donner une condition nécessaire et suffisante sur a pour que u=(1,1,2) appartienne à Vect(x,y). Comparer alors Vect(x,y), Vect(x,u) et Vect(y,u).

Exercice 12.

Soient F = Vect((2,3,-1);(1,-1-2)) et G = Vect((3,7,0);(5,0,-7)). Montrer que F = G.

Exercice 13.

Soient $F = \left\{ f \in \mathcal{C}([-1;1],\mathbb{C}) \mid \int_{-1}^{1} f(t) dt = 0 \right\}$ et $G = \{ f \in \mathcal{C}([-1;1],\mathbb{C}) \mid f \text{ constante} \}.$

Montrer que F et G sont des sous-espaces vectoriels supplémentaires de $\mathscr{C}([-1;1],\mathbb{C})$.

Exercice 14.

Soient

$$G = \{(x_1, x_2, \dots, x_n) \in \mathbb{K}^n \mid x_1 + x_2 + \dots + x_n = 0\}$$

et $u = (1, \ldots, 1) \in \mathbb{K}^n$.

Montrer que G et Vect(u) sont des sous-espaces vectoriels supplémentaires de \mathbb{K}^n .

Correction: F = Vect(u) est un sous espace vectoriel de \mathbb{R}^n et G est un sous espace vectoriel de \mathbb{R}^n , (Vérifier!) Soit $x = (x_1, ..., x_n) \in \mathbb{R}^n$ et soit $\lambda \in \mathbb{R}$.

$$x - \lambda u \in G \iff (x_1 - \lambda, ..., x_n - \lambda) \in G \iff \sum_{k=1}^n (x_k - \lambda) = 0 \iff \lambda = \frac{1}{n} \sum_{k=1}^n x_k.$$

Donc,

$$\forall x \in \mathbb{R}^n, \exists! \lambda \in \mathbb{R}/x - \lambda u \in G,$$

et donc,

$$\mathbb{R}^n = F \oplus G$$
.

Exercice 15.

Dans l'espace $E = \mathscr{C}([0; \pi], \mathbb{R})$ on considère les parties

$$F = \{ f \in E \mid f(0) = f(\pi/2) = f(\pi) \} \text{ et } G = \text{Vect(sin, cos)}$$

Montrer que F et G sont des sous-espaces vectoriels supplémentaires de E.

Exercice 16.

Soit $F = \{ f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) \mid f(0) + f(1) = 0 \}.$

- 1. Montrer que *F* est un sous-espace vectoriel.
- 2. Déterminer un supplémentaire de F dans $\mathscr{F}(\mathbb{R},\mathbb{R})$.

Exercice 17.

Les familles suivantes de vecteurs de \mathbb{R}^3 sont-elles libres?

Si ce n'est pas le cas, former une relation linéaire liant ces vecteurs :

- 1. (x_1, x_2) avec $x_1 = (1, 0, 1)$ et $x_2 = (1, 2, 2)$
- 2. (x_1, x_2, x_3) avec $x_1 = (1, 0, 0), x_2 = (1, 1, 0)$ et $x_3 = (1, 1, 1)$
- 3. (x_1, x_2, x_3) avec $x_1 = (1, 2, 1), x_2 = (2, 1, -1)$ et $x_3 = (1, -1, -2)$
- 4. (x_1, x_2, x_3) avec $x_1 = (1, -1, 1), x_2 = (2, -1, 3)$ et $x_3 = (-1, 1, -1)$.

Exercice 18.

On pose f_1, f_2, f_3, f_4 : $[0; 2\pi] \to \mathbb{R}$ les fonctions définies par : $f_1(x) = \cos x$, $f_2(x) = x \cos x$, $f_3(x) = \sin x$ et $f_4(x) = x \sin x$. Montrer que la famille (f_1, f_2, f_3, f_4) est libre.

Exercice 19.

Pour tout entier $0 \le k \le n$, on pose $f_k : \mathbb{R} \to \mathbb{R}$ la fonction définie par $f_k(x) = e^{k \cdot x}$. Montrer que la famille $(f_k)_{0 \le k \le n}$ est une famille libre de $\mathscr{F}(\mathbb{R}, \mathbb{R})$.

Exercice 20.

Soient A, B, C des sous-espaces vectoriels d'un \mathbb{K} espace vectoriel E. On suppose A et B supplémentaires et $A \subset C$. Montrer que A et $B \cap C$ sont supplémentaires dans C.

Exercice 21.

Soient E un \mathbb{K} -espace vectoriel et $(u_1, \ldots, u_n, u_{n+1})$ une famille de vecteurs de E. Établir :

- 1. Si $(u_1, ..., u_n)$ est libre et $u_{n+1} \notin \text{Vect}(u_1, ..., u_n)$ alors $(u_1, ..., u_n, u_{n+1})$ est libre
- 2. Si $(u_1, ..., u_n, u_{n+1})$ est génératrice et $u_{n+1} \in \text{Vect}(u_1, ..., u_n)$ alors $(u_1, ..., u_n)$ est génératrice.

Exercice 22.

Soit *E* un espace vectoriel.

1. Soient F et G deux sous-espaces de E. Montrer que

 $F \cup G$ est un sous-espace vectoriel de $E \iff F \subset G$ ou $G \subset F$.

2. Soit *H* un troisième sous-espace vectoriel de *E*. Prouver que

$$G \subset F \Longrightarrow F \cap (G+H) = G + (F \cap H).$$

indication

- 1. Pour le sens \Rightarrow : raisonner par l'absurde et prendre un vecteur de $F \setminus G$ et un de $G \setminus F$. Regarder la somme de ces deux vecteurs.
- 2. Raisonner par double inclusion, revenir aux vecteurs.

Exercice 23.

Soit a_1, \dots, a_p des réels deux à deux distincts et $I = \{a_1, \dots, a_p\}$. Montrer que la famille (f_1, \dots, f_p) est libre dans l'espace fonctionnel qui la contient pour les cas suivants.

1. Pour $i \in [1, p]$, on définit f_i dans $\mathbb{R} - I$ par :

$$f_i(t) = \frac{1}{t - a_i}.$$

2. Pour $i \in [1, p]$, f_i est la fonction caractéristique de l'intervalle $[a_i, +\infty[$.

Exercice 24.

Soit F, G, H des sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E. Montrer que

$$\left. \begin{array}{l} F+G=F+H \\ F\cap G\subset F\cap H \\ H\subset G \end{array} \right\} \Rightarrow H=G.$$

Exercice 25.

Dans $E = \mathscr{C}^{\infty}([0,1],\mathbb{R})$, on définit F par :

$$\forall f \in E, f \in F \iff \begin{cases} \int_0^1 f(t) dt = 0 \\ f(0) = 0 \end{cases}$$
$$f'(0) = 0$$

On définit $G = \text{Vect}(e_0, e_1, e_2)$ avec

$$\forall i \in [0,2], e_i(t) = t^i.$$

Montrer que F et G sont des sous-espaces supplémentaires dans E.

Exercice 26.

Soit $E = \mathscr{F}(\mathbb{R}, \mathbb{R})$. On dit que $f \in E$ est de signe constant si et seulement si $f(\mathbb{R}) \subset \mathbb{R}_+$ ou $f(\mathbb{R}) \subset \mathbb{R}_-$. Quels sont les sous-espaces de E constitués uniquement de fonctions de signe constant?

Exercice 27.

Soit (e_1, \dots, e_p) une famille libre d'un K-espace vectoriel E. On pose $x_i = e_1 + \dots + e_i$ pour tout entier i entre 1 et p. La famille (x_1, \dots, x_p) est-elle libre?

Même question avec $y_k = e_k - e_{k+1}$ si $k \in \{1, \dots, p-1\}$ et $y_p = e_p$ ou $y_p = e_p - e_1$.

Exercice 28.

Dans $E = \mathbb{R}^4$, on définit deux sous-espaces vectoriels :

$$(x_1, x_2, x_3, x_4) \in A \iff \begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 - x_2 + x_3 - x_4 = 0 \end{cases}$$

$$B = \text{Vect}(b_1, b_2) \text{ avec } \begin{cases} b_1 = (1, 2, -1, 0) \\ b_2 = (1, 0, 0, -1) \end{cases}$$

$$B = \text{Vect}(b_1, b_2) \text{ avec } \begin{cases} b_1 = (1, 2, -1, 0) \\ b_2 = (1, 0, 0, -1) \end{cases}$$

Montrer que A et B sont supplémentaires.

Exercice 29.

Soit (e_1, \ldots, e_n) une famille libre de vecteurs de E.

Montrer que pour tout $a \in E \setminus \text{Vect}(e_1, \dots, e_p)$, la famille $(e_1 + a, \dots, e_p + a)$ est libre.

Exercice 30.

Soit $(a, b, c) \in \mathbb{R}^3$. Les fonctions $x \mapsto \sin(x+a), x \mapsto \sin(x+b)$ et $x \mapsto \sin(x+c)$ sont-elles linéairement indépendantes?

Exercice 31.

Pour $a \in \mathbb{R}$, on note f_a l'application de \mathbb{R} vers \mathbb{R} définie par $f_a(x) = |x - a|$. Montrer que la famille $(f_a)_{a\in\mathbb{R}}$ est une famille libre d'éléments de l'espace $\mathscr{F}(\mathbb{R},\mathbb{R})$

Exercice 32.

Pour $a \in \mathbb{C}$, on note e_a l'application de \mathbb{R} vers \mathbb{C} définie par $e_a(t) = \exp(at)$. Montrer que la famille $(e_a)_{a \in \mathbb{C}}$ est une famille libre d'éléments de l'espace $\mathscr{F}(\mathbb{R}, \mathbb{C})$.

Exercice 33.

Pour $a \in \mathbb{R}_+$, on note f_a l'application de \mathbb{R} vers \mathbb{R} définie par

$$f_a(t) = \cos(at)$$

Montrer que la famille $(f_a)_{a \in \mathbb{R}_+}$ est une famille libre d'éléments de l'espace de $\mathscr{F}(\mathbb{R}, \mathbb{R})$.

Exercice 34.

Soit E l'espace vectoriel des fonctions réelles indéfiniment dérivables à valeurs dans \mathbb{R} .

Montrer que les quatre fonctions définies par

$$x_1(t) = \cos t \cosh t,$$

 $x_2(t) = \sin t \cosh t,$

$$x_2(t) = \sin t \cosh t,$$

$$x_3(t) = \cos t \sinh t,$$

$$x_4(t) = \sin t \sinh t$$

appartiennent à E et sont linéairement indépendantes.

Exercice 35.

Soit $E = \mathbb{R}_n[X]$ l'espace vectoriel des polynômes de degré $\leq n$. On définit

$$E_a = \{P \in E; (X - a)/P\}$$

pour $a \in \mathbb{R}$. Montrer que si $a \neq b$ il existe un couple de réels (c,d) tels que 1 = c(X-a) + d(X-b). En déduire que $E = E_a + E_b$, la somme est-elle directe?

Exercice 36.

Soit $E = \Delta^1(\mathbb{R}, \mathbb{R})$ l'espace des fonctions dérivables et $F = \{f \in E \mid f(0) = f'(0) = 0\}$. Montrer que F est un sous-espace vectoriel de E et déterminer un supplémentaire de F dans E.

Correction

Analysons d'abord les fonctions de E qui ne sont pas dans F: ce sont les fonctions h qui vérifient $h(0) \neq 0$ ou $h'(0) \neq 0$. Par exemple les fonctions constantes $x \mapsto b$, $(b \in \mathbb{R}^*)$ ou les homothéties $x \mapsto ax$, $(a \in \mathbb{R}^*)$ n'appartiennent pas à F. Cela nous donne l'idée de poser

$$G = \left\{ x \mapsto ax + b \mid (a, b) \in \mathbb{R}^2 \right\}.$$

Montrons que G est un supplémentaire de F dans E.

Soit $f \in F \cap G$, alors f(x) = ax + b (car $f \in G$) et f(0) = b et f'(0) = a; mais $f \in F$ donc f(0) = 0 donc b = 0 et f'(0) = 0 donc a = 0. Maintenant f est la fonction nulle : $F \cap G = \{0\}$.

Soit $h \in E$, alors remarquons que pour f(x) = h(x) - h(0) - h'(0)x la fonction f vérifie f(0) = 0 et f'(0) = 0 donc $f \in F$. Si nous écrivons l'égalité différemment nous obtenons

$$h(x) = f(x) + h(0) + h'(0)x.$$

Posons g(x) = h(0) + h'(0)x, alors la fonction $g \in G$ et

$$h=f+g,$$

ce qui prouve que toute fonction de E s'écrit comme somme d'une fonction de F et d'une fonction de G : E = F + G. En conclusion nous avons montré que $E = F \oplus G$.

Exercice 37.

Soit

$$E = \{(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid (u_n)_n \text{ converge } \}.$$

Montrer que l'ensemble des suites constantes et l'ensemble des suites convergeant vers 0 sont des sous-espaces supplémentaires dans E.

Correction:

On note F l'espace vectoriel des suites constantes et G l'espace vectoriel des suites convergeant vers 0.

- 1. $F \cap G = \{0\}$. En effet une suite constante qui converge vers 0 est la suite nulle.
- 2. F + G = E. Soit (u_n) un élément de E. Notons ℓ la limite de (u_n) . Soit (v_n) la suite définie par $v_n = u_n \ell$, alors (v_n) converge vers 0. Donc $(v_n) \in G$. Notons (w_n) la suite constante égale à ℓ . Alors nous avons $u_n = \ell + u_n \ell$, ou encore $u_n = w_n + v_n$, ceci pour tout $n \in \mathbb{N}$. En terme de suite cela donne $(u_n) = (w_n) + (v_n)$. Ce qui donne la décomposition cherchée.

Bilan : F et G sont en somme directe dans E : $E = F \oplus G$.

Exercice 38.

On pose:

$$F = \{(x, 2x, 3x), x \in \mathbb{R} \} \text{ et } G = \{(x + y, x + y, y), (x, y) \in \mathbb{R}^2 \}$$

Montrer que $\mathbb{R}^3 = F \oplus G$

Exercice 39.

- 1. Soit $A = \{P \in \mathbb{R}[X] \text{ tq } P = (1 X)Q(X^2) \text{ avec } Q \in \mathbb{R}[X]\}.$
 - (a) Montrer que A est un \mathbb{R} -ev et que l'on a $R[X] = A \oplus \{$ polynômes pairs $\}$. A-t-on $R[X] = A \oplus \{$ polynômes impairs $\}$?
 - (b) Que peut-on dire si l'on remplace $Q(X^2)$ par une fonction f paire?
- 2. Soient E_1 , E_2 deux sev d'un ev E tels que E_1 et E_2 sont isomorphes et $E = E_1 \oplus E_2$. Montrer que E_1 et E_2 ont un supplémentaire commun.

Correction

- 1. (a) Soit $P \in \mathbb{R}[X]$ que l'on décompose en $P = P_1(X^2) + XP_2(X^2)$. Alors $P = (P_1 + P_2)(X^2) (1 X)P_2(X^2) = (1 X)P_1(X^2) + X(P_1 + P_2)(X^2)$, ce qui prouve que les deux sommes sont égales à $\mathbb{R}[X]$. Ces sommes sont facilement directes.
 - (b) Cela ne change pas *A* : les éléments de *A* sont ceux dont les parties paire et impaire sont opposées (au facteur *X* près), indépendament du fait (vrai) que ces parties sont des polynômes.
- 2. Soit f un isomorphisme de E_1 sur E_2 et $F = \{x f(x) \text{ tq } x \in E_1\}$. Alors $E = E_1 \oplus F = E_2 \oplus F$.

Exercice 40.

Soit $E = K_3[X]$, $F = \{P \in E \text{ tq } P(0) = P(1) = P(2) = 0\}$, $G = \{P \in E \text{ tq } P(1) = P(2) = P(3) = 0\}$, et $H = \{P \in E \text{ tq } P(X) = P(X)\}$.

- 1. Montrer que $F \oplus G = \{P \in E \text{ tq } P(1) = P(2) = 0\}$.
- 2. Montrer que $F \oplus G \oplus H = E$.

Exercice 41.

Soit E_1, E_2, \dots, E_n des sous-espaces vectoriels d'un K-espace vectoriel E. Pour i entre 1 et n, on note

$$U_i = E_1 + \cdots + E_{i-1} + E_{i+1} + \cdots + E_n$$

Montrer que E_1, E_2, \dots, E_n sont en somme directe si et seulement si les $U_i \cap E_i = \{0_E\}$.

Exercice 42.

Déterminer si les ensembles suivants sont ou ne sont pas des sous-espaces vectoriels :

- 1. $E_1 = \{P \in \mathbb{R}[X]; P(0) = P(2)\};$
- 2. $E_2 = \{ P \in \mathbb{R}[X]; P'(0) = 2 \};$
- 3. Pour $A \in \mathbb{R}[X]$ non-nul fixé, $E_3 = \{P \in \mathbb{R}[X]; A|P\}$;
- 4. \mathcal{D} l'ensemble des fonctions de \mathbb{R} dans \mathbb{R} qui sont dérivables;
- 5. E_4 , l'ensemble des solutions de l'équation différentielle y' + a(x)y = 0, où $a \in \mathcal{D}$.
- 6. E_5 , l'ensemble des solutions de l'équation différentielle y' + a(x)y = x, où $a \in \mathcal{D}$.

Exercice 43.

Soit $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$ l'espace vectoriel des fonctions de \mathbb{R} dans \mathbb{R} . Étudier l'indépendance linéaire des familles suivantes :

- 1. $(\sin x, \cos x)$;
- 2. $(\sin 2x, \sin x, \cos x)$;
- 3. $(\cos 2x, \sin^2 x, \cos^2 x)$;
- 4. $(x, e^x, \sin(x))$.

Exercice 44.

On considère dans \mathbb{R}^4 les cinq vecteurs suivants : $v_1 = (1,0,0,1)$, $v_2 = (0,0,1,0)$, $v_3 = (0,1,0,0)$, $v_4 = (0,0,0,1)$ et $v_5 = (0,1,0,1)$. Dire si les sous-espaces vectoriels suivants sont supplémentaires dans \mathbb{R}^4 .

- 1. $\operatorname{vect}(v_1, v_2)$ et $\operatorname{vect}(v_3)$?
- 2. $\text{vect}(v_1, v_2)$ et $\text{vect}(v_4, v_5)$?
- 3. $\text{vect}(v_1, v_3, v_4)$ et $\text{vect}(v_2, v_5)$?
- 4. $\text{vect}(v_1, v_4)$ et $\text{vect}(v_3, v_5)$?

Exercice 45.

Soit *E* l'espace vectoriel des suites réelles,

$$F = \{(u_n) \in E; \ \forall n \in \mathbb{N}, \ u_{2n} = 0\}$$

$$G = \{(u_n) \in E; \ \forall n \in \mathbb{N}, \ u_{2n} = u_{2n+1}\}.$$

Démontrer que F et G sont supplémentaires.

Exercice 46.

Soit E l'espace vectoriel des fonctions de \mathbb{R} dans \mathbb{R} , F le sous-espace vectoriel des fonctions périodiques de période 1 et G le sous-espace vectoriel des fonctions f telles que $\lim_{t\to\infty} f=0$. Démontrer que $F\cap G=\{0\}$. Est-ce que F et G sont supplémentaires?

Exercice 47.

Soit $A \in \mathbb{R}[X]$ un polynôme non-nul et $F = \{P \in \mathbb{R}[X]; A \text{ divise } P\}$. Montrer que F est un sous-espace vectoriel de $\mathbb{R}[X]$ et trouver un supplémentaire à F.

Exercice 48.

Soit $E = \mathscr{F}(\mathbb{R}, \mathbb{R})$ l'espace vectoriel des fonctions de \mathbb{R} dans \mathbb{R} . On note F le sous-espace vectoriel des fonctions paires (ie f(-x) = f(x) pour tout $x \in \mathbb{R}$) et G le sous-espace vectoriel des fonctions impaires (ie f(-x) = -f(x) pour tout $x \in \mathbb{R}$). Montrer que F et G sont supplémentaires.

Exercice 49.

Soit E un espace vectoriel dans lequel tout sous-espace vectoriel admet un supplémentaire. Soit F un sous-espace vectoriel propre de E (c'est-à -dire que $F \neq \{0\}$) et que $F \neq E$). Démontrer que F admet au moins deux supplémentaires distincts.

Exercice 50.

Soit E l'espace vectoriel des fonctions de \mathbb{R} dans \mathbb{R} .

- 1. Soit $a \in \mathbb{R}$. On désigne par F le sous-espace des fonctions constantes et par G_a le sous-espace des fonctions qui s'annulent en a. Montrer que F et G_a sont supplémentaires dans E.
- 2. Plus généralement, soient a_0, \ldots, a_N des éléments distincts de \mathbb{R} et $G = \{f \in E; f(a_0) = \cdots = f(a_N) = 0\}$. Trouver un supplémentaire à G.

Exercice 51.

Soit E un K-espace vectoriel, soit A, B deux sous-espaces vectoriels de E et C un supplémentaire de $A \cap B$ dans B. Montrer que $A \oplus C = A + B$.

Exercice 52.

Soit $\mathbb K$ un corps infini (par exemple $\mathbb Q$, $\mathbb R$ ou $\mathbb C$) et E un $\mathbb K$ -espace vectoriel. On considère une famille finie A_1,\cdots,A_p de sous-espaces vectoriels vérifiant :

- $A_1 \cup \cdots \cup A_p$ est un sous-espace vectoriel de E,
- il existe i et j distincts tels que $A_i \not\subseteq A_j$.

Montrer que

$$A_j\subset\bigcup_{k\neq j}A_k$$

On pourra considérer des $a_i + \lambda x$ avec $x \in A_i$ et $a_i \in A_i$ tel que $a_i \notin A_i$ puis utiliser le principe des tiroirs.

Si on veut ranger strictement plus de q objets dans q tiroirs, au moins un tiroir contient plusieurs objets.

Exercice 53.

Soient F, G, F', G' des sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E vérifiant

$$F \oplus G = F' \oplus G' = E$$
 et $F' \subset G$

Montrer

$$F \oplus F' \oplus (G \cap G') = E$$

Exercice 54.

Soient E_1, \ldots, E_n et F_1, \ldots, F_n sous-espaces vectoriels de E tel que $E_i \subset F_i$ et

$$\bigoplus_{i=1}^n E_i = \bigoplus_{i=1}^n F_i$$

Montrer que $E_i = F_i$.

Exercice 55.

Pour $k \in \{0, ..., n\}$, on pose $P_k = (X+1)^{k+1} - X^{k+1}$. Montrer que la famille $(P_0, ..., P_n)$ est une base de $\mathbb{K}_n[X]$.

Exercice 56.

Pour $k \in \{0, 1, ..., n\}$, on pose $P_k = X^k (1-X)^{n-k}$. Montrer que la famille $(P_0, ..., P_n)$ est une base de $\mathbb{K}_n[X]$.

Exercice 57.

Pour $k \in \mathbb{N}$, on pose

$$P_k = \frac{X(X-1)\dots(X-k+1)}{k!}$$

- 1. Montrer que la famille $(P_0, P_1, ..., P_n)$ est une base de $\mathbb{R}_n[X]$.
- 2. Montrer que

$$\forall x \in \mathbb{Z}, \forall k \in \mathbb{N}, P_k(x) \in \mathbb{Z}$$

3. Trouver tous les polynômes *P* tels que

$$\forall x \in \mathbb{Z}, P(x) \in \mathbb{Z}$$

Exercice 58.

Soit *E* l'espace vectoriel des applications de \mathbb{R} dans \mathbb{R} .

On considère *F* la partie de *E* constituée des applications de la forme :

$$x \mapsto P(x) \sin x + Q(x) \cos x$$
 avec $P, Q \in \mathbb{R}_n[X]$

- 1. Montrer que *F* un sous-espace vectoriel de *E*.
- 2. Montrer que F est de dimension finie et déterminer $\dim F$.

Exercice 59.

Montrer par des opérations sur les Vect l'égalité :

$$\mathbb{R}_2[X] = \text{Vect}((X-1)^2, (X-1)(X+1), (X+1)^2)$$

Exercice 60.

Soient $x_1, ..., x_n \in \mathbb{R}$ distincts. On pose :

$$F = \{ f \in \mathcal{C}(\mathbb{R}, \mathbb{R}) / \quad \forall k \in [1 ; n], \quad f(x_k) = 0 \}$$

- 1. Montrer que F est un sous-espace vectoriel de $\mathscr{C}(\mathbb{R},\mathbb{R})$.
- 2. Déterminer un supplémentaire de F dans $\mathscr{C}(\mathbb{R}, \mathbb{R})$.

Exercice 61.

Soit $E=\mathbb{R}_n[X]$. On considère $T:E\to E$ l'application qui à tout polynôme $P\in E$ associe le polynôme Q défini par Q(X)=P(X+1). Montrer que T est un automorphisme de E

Exercice 62.

Soit $E = C^{\infty}(\mathbb{R}, \mathbb{R})$ et $\phi : E \to E$ l'application définie par :

$$\forall y \in E, \phi(y) = y'' - 4y' + 3y$$

- 1. Montrer que ϕ est un endomorphisme surjectif de E
- 2. Déterminer son noyau. ϕ est-il injectif?

Exercice 63.

Soit $E = C^0(\mathbb{R}, \mathbb{R})$ et ϕ l'application définie sur E qui à toute fonction $f \in E$ associe la fonction $g : \mathbb{R} \to \mathbb{R}$, définie par :

$$\forall x \in \mathbb{R}, \ g(x) = \int_0^x t f(t) dt$$

Exercice 64.

Montrer, pour tout $n \in \mathbb{N}$, qu'il existe un unique $P_n \in \mathbb{R}_{n+1}[X]$ tel que $P_n(0) = 0$ et $P_n(X+1) - P_n(X) = X^n$.

Exercice 65.

- 1. Montrer que la famille $(X + k)^n$ pour $k \in \{0, ..., n\}$ constitue une base de $\mathbb{R}_n[X]$.
- 2. Redémontrer la formule donnant l'expression du déterminant de Vandermonde

Exercice 66.

Soit *E* l'ensemble des fonctions $f: \mathbb{R} \to \mathbb{R}$ telles qu'il existe $a, b, c \in \mathbb{R}$ pour lesquels :

$$\forall x \in \mathbb{R}, f(x) = (ax^2 + bx + c)\cos x$$

- 1. Montrer que E est sous-espace vectoriel de $\mathscr{F}(\mathbb{R},\mathbb{R})$.
- 2. Déterminer une base de *E* et sa dimension.

Exercice 67.

Soient $p \in \mathbb{N}^*$ et E l'ensemble des suites réelles p périodiques i.e. l'ensemble des suites réelles (u_n) telles que

$$\forall n \in \mathbb{N}, u(n+p) = u(n)$$

Montrer que E est un \mathbb{R} -espace vectoriel de dimension finie et déterminer celle-ci.

Exercice 68.

Soient $p \in \mathbb{N}^*$ et E l'ensemble des suites complexes p périodiques i.e. l'ensemble des suites (u_n) telles que

$$\forall n \in \mathbb{N}, u(n+p) = u(n)$$

- 1. Montrer que *E* est un C-espace vectoriel de dimension finie et déterminer celle-ci.
- 2. Déterminer une base de *E* formée de suites géométriques.

Exercice 69.

Soit E un \mathbb{K} -espace vectoriel muni d'une base $e = (e_1, \dots, e_n)$. Pour tout $i \in \{1, \dots, n\}$, on pose $\varepsilon_i = e_1 + \dots + e_i$.

- 1. Montrer que $\varepsilon = (\varepsilon_1, \dots, \varepsilon_n)$ est une base de E.
- 2. Exprimer les composantes dans ε d'un vecteur en fonction de ses composantes dans e.

Exercice 70.

[Lemme d'échange] Soient (e_1, \ldots, e_n) et (e'_1, \ldots, e'_n) deux bases d'un \mathbb{R} -espace vectoriel E. Montrer qu'il existe $j \in \{1, \ldots, n\}$ tel que la famille $(e_1, \ldots, e_{n-1}, e'_i)$ soit encore une base de E.

Exercice 71.

Soit *E* un espace vectoriel de dimension finie.

- 1. Soient H et H' deux hyperplans de E. Montrer que ceux-ci possèdent un supplémentaire commun.
- 2. Soient F et G deux sous-espaces vectoriels de E tels que $\dim F = \dim G$. Montrer que F et G ont un supplémentaire commun.

Exercice 72.

Montrer que deux sous-espaces vectoriels d'un espace vectoriel de dimension finie qui sont de même dimension ont un supplémentaire commun.

Exercice 73.

Soient \mathbb{K} un sous-corps de \mathbb{C} , E un \mathbb{K} -espace vectoriel de dimension finie, F_1 et F_2 deux sous-espaces vectoriels de E.

- 1. On suppose $\dim F_1 = \dim F_2$. Montrer qu'il existe G sous-espace vectoriel de E tel que $F_1 \oplus G = F_2 \oplus G = E$.
- 2. On suppose que $\dim F_1 \leq \dim F_2$. Montrer qu'il existe G_1 et G_2 sous-espaces vectoriels de E tels que $F_1 \oplus G_1 = F_2 \oplus G_2 = E$ et $G_2 \subset G_1$.

Exercice 74.

Soit $(e_1, ..., e_p)$ une famille libre de vecteurs de E, $F = \text{Vect}(e_1, ..., e_p)$ et G un supplémentaire de F dans E. Pour tout $a \in G$, on note

$$F_a = \text{Vect}(e_1 + a, \dots, e_p + a)$$

1. Montrer que

$$F_a \oplus G = E$$

2. Soient $a, b \in G$. Montrer

$$a \neq b \implies F_a \neq F_b$$

Exercice 75.

 E_1 et E_2 étant deux sous-espaces vectoriels de dimensions finies d'un espace vectoriel E, on définit l'application $f: E_1 \times E_2 \to E$ par $f(x_1, x_2) = x_1 + x_2$.

- 1. Montrer que f est linéaire.
- 2. Déterminer le noyau et l'image de f.
- 3. Appliquer le théorème du rang.

Correction

- 1. ...
- 2. Par définition de f et ce qu'est la somme de deux sous-espaces vectoriels, l'image est

$$\operatorname{Im} f = E_1 + E_2.$$

Pour le noyau:

$$\ker f = \{(x_1, x_2) \mid f(x_1, x_2) = 0\}$$
$$= \{(x_1, x_2) \mid x_1 + x_2 = 0\}$$

Mais on peut aller un peu plus loin. En effet un élément $(x_1, x_2) \in \ker f$, vérifie $x_1 \in E_1$, $x_2 \in E_2$ et $x_1 = -x_2$. Donc $x_1 \in E_2$. Donc $x_1 \in E_1 \cap E_2$. Réciproquement si $x \in E_1 \cap E_2$, alors $(x, -x) \in \ker f$. Donc

$$\ker f = \{(x, -x) \mid x \in E_1 \cap E_2\}.$$

De plus par l'application $x \mapsto (x, -x)$, ker f est isomorphe à $E_1 \cap E_2$.

3. Le théorème du rang s'écrit:

$$\dim \ker f + \dim \operatorname{Im} f = \dim(E_1 \times E_2).$$

Compte tenu de l'isomorphisme entre $\ker f$ et $E_1 \cap E_2$ on obtient :

$$\dim(E_1 \cap E_2) + \dim(E_1 + E_2) = \dim(E_1 \times E_2).$$

Mais $\dim(E_1 \times E_2) = \dim E_1 + \dim E_2$, donc on retrouve ce que l'on appelle quelques fois le théorème des quatre dimensions :

$$\dim(E_1+E_2)=\dim E_1+\dim E_2-\dim(E_1\cap E_2).$$

Exercice 76.

Déterminer le rang des familles de vecteurs suivantes de \mathbb{R}^4 :

- 1. (x_1, x_2, x_3) avec $x_1 = (1, 1, 1, 1), x_2 = (1, -1, 1, -1)$ et $x_3 = (1, 0, 1, 1)$.
- 2. (x_1, x_2, x_3, x_4) avec $x_1 = (1, 1, 0, 1), x_2 = (1, -1, 1, 0), x_3 = (2, 0, 1, 1)$ et $x_4 = (0, 2, -1, 1)$.

Exercice 77.

Soit (x_1, \ldots, x_n) une famille de vecteurs d'un \mathbb{K} -espace vectoriel E.

Montrer que pour $p \le n$:

$$\operatorname{rg}(x_1,\ldots,x_p) \ge \operatorname{rg}(x_1,\ldots,x_n) + p - n$$

Exercice 78.

Soit E un \mathbb{K} -espace vectoriel de dimension finie supérieure à 2.

Soit H_1 et H_2 deux hyperplans de E distincts.

Déterminer la dimension de $H_1 \cap H_2$.

Exercice 79.

Soient H un hyperplan et F un sous-espace vectoriel non inclus dans H. Montrer

$$\dim F \cap H = \dim F - 1$$

Exercice 80.

Soit *E* un espace de dimension finie et *F* un sous-espace vectoriel de *E* distinct de *E*. Montrer que *F* peut s'écrire comme une intersection d'un nombre fini d'hyperplans. Quel est le nombre minimum d'hyperplans nécessaire?

Exercice 81.

Soient D une droite vectorielle et H un hyperplan d'un \mathbb{K} -espace vectoriel E de dimension $n \in \mathbb{N}^*$. Montrer que si $D \not\subset H$ alors D et H sont supplémentaires dans E.

Exercice 82.

Soient E un \mathbb{K} -espace vectoriel de dimension finie $n \in \mathbb{N}^*$, H un hyperplan de E et D une droite vectorielle de E. À quelle condition H et D sont-ils supplémentaires dans E?

Exercice 83.

Soient E un espace vectoriel de dimension finie et F un sous-espace vectoriel de E, distinct de E.

Montrer que F peut s'écrire comme une intersection d'un nombre fini d'hyperplans.

Quel est le nombre minimum d'hyperplans nécessaire?

Exercice 84.

Soient E un espace vectoriel de dimension n et f une application linéaire de E dans lui-même. Montrer que les deux assertions qui suivent sont équivalentes :

- 1. $\ker(f) = \text{Im}(f)$.
- 2. $f^2 = 0$ et $n = 2 \operatorname{rg}(f)$.

Correction

- pour l'implication (i) \Rightarrow (ii) : Supposons $\ker f = \operatorname{Im} f$. Soit $x \in E$, alors $f(x) \in \operatorname{Im} f$ donc $f(x) \in \ker f$, cela entraine f(f(x)) = 0; donc $f^2 = 0$. De plus d'après la formule du rang $\dim \ker f + \operatorname{rg} f = n$, mais $\dim \ker f = \dim \operatorname{Im} f = \operatorname{rg} f$, ainsi $2\operatorname{rg} f = n$.
- pour l'implication (ii) \Rightarrow (i) : Si $f^2 = 0$ alors $\operatorname{Im} f \subset \ker f$ car pour $y \in \operatorname{Im} f$ il existe x tel que y = f(x) et $f(y) = f^2(x) = 0$. De plus si $2\operatorname{rg} f = n$ alors par la formule Du rang $\dim \ker f = \operatorname{rg} f$ c'est-à-dire $\dim \ker f = \dim \operatorname{Im} f$. Nous savons donc que $\operatorname{Im} f$ est inclus dans $\ker f$ mais ces espaces sont de même de dimension donc sont égaux : $\ker f = \operatorname{Im} f$.

Exercice 85.

Soit $\varphi : \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}) \to \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R})$ définie par $\varphi(f) = f'' - 3f' + 2f$.

Montrer que φ est un endomorphisme et préciser son noyau.

Exercice 86.

Soient a un élément d'un ensemble X non vide et E un \mathbb{K} -espace vectoriel.

- 1. Montrer que $E_a: \mathscr{F}(X,E) \to E$ définie par $E_a(f) = f(a)$ est une application linéaire.
- 2. Déterminer l'image et le noyau de l'application E_a .

Exercice 87.

Soit E le \mathbb{R} -espace vectoriel des applications indéfiniment dérivables sur \mathbb{R} .

Soient $\varphi: E \to E$ et $\psi: E \to E$ les applications définies par :

 $\varphi(f) = f'$ et $\psi(f)$ est donnée par :

$$\forall x \in \mathbb{R}, \psi(f)(x) = \int_0^x f(t) dt$$

- 1. Montrer que φ et ψ sont des endomorphismes de E.
- 2. Exprimer $\varphi \circ \psi$ et $\psi \circ \varphi$.
- 3. Déterminer images et noyaux de φ et ψ .

Exercice 88.

Soit E un espace vectoriel et $f \in \mathcal{L}(E)$ tel que pour tout $x \in E$, la famille (x, f(x)) est liée.

- 1/ Montrer que si $x \neq 0$, il existe un unique scalaire λ_x tel que $f(x) = \lambda_x x$.
- 2/ Comparer λ_x et λ_y lorsque (x, y) est libre.
- 3/ Montrer que f est une homothétie.

Exercice 89.

Soient p,q deux projections de même base H et de directions F,G. Soit $\lambda \in \mathbb{K}$. Montrer que $\lambda p + (1-\lambda)q$ est encore une projection de base H

Exercice 90.

Soit E un ev de dimension n et $f \in \mathcal{L}(E)$. On suppose qu'il existe un vecteur $u \in E$ tel que la famille $(f^k(u))_{k \in \mathbb{N}}$ engendre l'espace E.

- 1/ Montrer que $(u, ..., f^{n-1}(u))$ est une base de E
- 2/ Montrer qu'un endomorphisme $g \in \mathcal{L}(E)$ commute avec f si et seulement si c'est un polynôme en f.

Exercice 91.

Soient E un \mathbb{C} -espace vectoriel de dimension finie n et f un endomorphisme de E non injectif. Pour k entier naturel donné, on pose $N_k = \text{Ker } f^k$ et $I_k = \text{Im } f^k$ (avec la convention $f^0 = Id_E$).

- 1. Montrer que : $\forall k \in \mathbb{N}$, $(N_k \subset N_{k+1} \text{ et } I_{k+1} \subset I_k)$.
- 2. (a) Montrer que : $(\forall k \in \mathbb{N}, (N_k = N_{k+1} \Rightarrow N_{k+1} = N_{k+2}).$
 - (b) Montrer que : $\exists p \in \mathbb{N} / \forall k \in \mathbb{N}$, $(k et <math>k \geq p \Rightarrow N_k = N_{k+1}$.
 - (c) Montrer que $p \le n$.
- 3. Montrer que si k < p, $I_k = I_{k+1}$ et si $k \ge p$, $I_k = I_{k+1}$.
- 4. Montrer que $E = I_p \oplus N_p$ et que f induit un automorphisme de I_p .
- 5. Soit $d_k = \dim I_k$. Montrer que la suite $(d_k d_{k+1})_{k \in \mathbb{N}}$ est décroissante (en d'autres termes la suite des images itérées I_k décroît de moins en moins vite).

Exercice 92.

Montrer que l'application partie entière $\text{Ent} \colon \mathbb{K}(X) \to \mathbb{K}[X]$ est linéaire et déterminer son noyau.

Exercice 93.

Soit f une application linéaire d'un \mathbb{K} -espace vectoriel E vers un \mathbb{K} -espace vectoriel F. Montrer que pour toute partie A de E, on a f(Vect A) = Vect f(A).

Exercice 94.

Soient E, F deux \mathbb{K} -espaces vectoriels, $f \in \mathcal{L}(E, F)$ et A, B deux sous-espaces vectoriels de E. Montrer

$$f(A) \subset f(B) \iff A + \ker f \subset B + \ker f$$

Exercice 95.

Soient u un endomorphisme d'un \mathbb{K} -espace vectoriel E et F un sous-espace vectoriel de E.

- 1. Exprimer $u^{-1}(u(F))$ en fonction de F et de $\ker u$.
- 2. Exprimer $u(u^{-1}(F))$ en fonction de F et de $\operatorname{Im} u$.
- 3. À quelle condition a-t-on $u(u^{-1}(F)) = u^{-1}(u(F))$?

Exercice 96.

Caractériser les sous-espaces F d'un espace vectoriel E tels que

$$h^{-1}(h(F)) = h(h^{-1}(F))$$

Exercice 97.

Soit E et F des \mathbb{K} -espaces vectoriels. On se donne $f \in \mathcal{L}(E,F)$, une famille $(E_i)_{1 \leq i \leq n}$ de sous-espaces vectoriels de E et une famille $(F_j)_{1 \leq j \leq p}$ de sous-espaces vectoriels de F.

1. Montrer

$$f(\sum_{i=1}^{n} E_i) = \sum_{i=1}^{n} f(E_i)$$

- 2. Montrer que si f est injective et si la somme des E_i est directe alors la somme des $f(E_i)$ est directe.
- 3. Montrer

$$f^{-1}(\sum_{j=1}^p F_j) \supset \sum_{j=1}^p f^{-1}(F_j)$$

Montrer que cette inclusion peut être stricte. Donner une condition suffisante pour qu'il y ait égalité.

Exercice 98.

Soient E un K-espace vectoriel et $f \in \mathcal{L}(E)$ tel que les vecteurs x et f(x) sont colinéaires et ce pour tout $x \in E$.

- 1. Justifier que pour tout $x \in E$, il existe $\lambda_x \in \mathbb{K}$ tel que $f(x) = \lambda_x . x$.
- 2. Montrer que pour tout couple de vecteurs non nuls x et y, on a $\lambda_x = \lambda_y$. (indice : on pourra distinguer les cas : (x,y) liée ou (x,y) libre.)
- 3. Conclure que f est une homothétie vectorielle.

Exercice 99.

Soit $f \in \mathcal{L}(E)$ tel que pour tout $x \in E$, x et f(x) soient colinéaires. Montrer que f est une homothétie vectorielle.

Exercice 100.

Soient $f,g \in \mathcal{L}(E,F)$. On suppose

$$\forall x \in E, \exists \lambda_x \in \mathbb{K}, g(x) = \lambda_x f(x)$$

Montrer qu'il existe λ ∈ \mathbb{K} tel que

$$g = \lambda f$$

Exercice 101.

Soient f et g deux endomorphismes d'un \mathbb{K} -espace vectoriel E.

Montrer que $g \circ f = 0$ si, et seulement si, $\operatorname{Im} f \subset \ker g$.

Exercice 102.

Soient f et g deux endomorphismes d'un \mathbb{K} -espace vectoriel E.

- 1. Comparer $\ker f \cap \ker g$ et $\ker(f + g)$.
- 2. Comparer $\operatorname{Im} f + \operatorname{Im} g$ et $\operatorname{Im} (f + g)$.
- 3. Comparer $\ker f$ et $\ker f^2$.
- 4. Comparer $\operatorname{Im} f$ et $\operatorname{Im} f^2$.

Exercice 103.

Soit f un endomorphisme d'un \mathbb{K} -espace vectoriel E. Montrer

- 1. Im $f \cap \ker f = \{0_E\} \iff \ker f = \ker f^2$.
- 2. $E = \operatorname{Im} f + \ker f \iff \operatorname{Im} f = \operatorname{Im} f^2$.

Exercice 104.

Soient E un \mathbb{K} -espace vectoriel et $f \in \mathcal{L}(E)$ tel que

$$f^2 - 3f + 2 \operatorname{Id} = 0$$

- 1. Montrer que f est inversible et exprimer son inverse en fonction de f.
- 2. Établir que $\ker(f \operatorname{Id})$ et $\ker(f 2\operatorname{Id})$ sont des sous-espaces vectoriels supplémentaires de E.

Exercice 105.

Soient f et g deux endomorphismes d'un \mathbb{K} -espace vectoriel E vérifiant $f \circ g = \mathrm{Id}$; montrer que $\ker f = \ker(g \circ f)$, $\operatorname{Im} g = \operatorname{Im}(g \circ f)$ puis que $\ker f$ et $\operatorname{Im} g$ sont supplémentaires.

Exercice 106.

Soient f et g deux endomorphismes d'un espace vectoriel E sur \mathbb{R} ou \mathbb{C} vérifiant $f \circ g = \mathrm{Id}$.

- 1. Montrer que $\ker(g \circ f) = \ker f$ et $\operatorname{Im}(g \circ f) = \operatorname{Im} g$.
- 2. Montrer

$$E = \ker f \oplus \operatorname{Im} g$$

- 3. Dans quel cas peut-on conclure $g = f^{-1}$?
- 4. Calculer $(g \circ f) \circ (g \circ f)$ et caractériser $g \circ f$

Exercice 107.

Soient E un \mathbb{K} -espace vectoriel et f un endomorphisme de E nilpotent i.e. tel qu'il existe $n \in \mathbb{N}^*$ pour lequel $f^n = 0$. Montrer que $\mathrm{Id} - f$ est inversible et exprimer son inverse en fonction de f.

Exercice 108.

Soient E un \mathbb{K} -espace vectoriel et $p \in \mathcal{L}(E)$.

- 1. Montrer que p est un projecteur si, et seulement si, Id-p l'est.
- 2. Exprimer alors Im(Id-p) et ker(Id-p) en fonction de Im p et ker p.

Exercice 109.

Soient $p,q \in \mathcal{L}(E)$. Montrer l'équivalence entre les assertions :

- (i) $p \circ q = p$ et $q \circ p = q$;
- (ii) **p** et **q** sont des projecteurs de même noyau.

Exercice 110.

Soient E un \mathbb{K} -espace vectoriel et p,q deux projecteurs de E qui commutent.

Montrer que $p \circ q$ est un projecteur de E. En déterminer noyau et image.

Exercice 111.

Soient E un \mathbb{K} -espace vectoriel et p,q deux projecteurs de E qui commutent.

Montrer que $p \circ q$ est un projecteur de E. En déterminer noyau et image.

Exercice 112.

Soit E un \mathbb{K} -espace vectoriel.

Soit *s* un endomorphisme de *E* involutif, *i.e.* tel que $s^2 = Id$.

On pose $F = \ker(s - \operatorname{Id})$ et $G = \ker(s + \operatorname{Id})$.

- 1. Montrer que *F* et *G* sont des sous-espaces vectoriels supplémentaires de *E*.
- 2. Montrer que s est la symétrie vectorielle par rapport à F et parallèlement à G. Plus généralement, soient $\alpha \in \mathbb{K} \setminus \{1\}$ et f un endomorphisme de E tel que $f^2 (\alpha + 1)f + \alpha \operatorname{Id} = 0$. On pose $F = \ker(f \operatorname{Id})$ et $G = \ker(f \alpha \operatorname{Id})$.
- 3. Montrer que F et G sont supplémentaires dans E.
- 4. Montrer que f est l'affinité par rapport à F, parallèlement à G et de rapport α .

Exercice 113.

Soit $f \in \mathcal{L}(E)$ tel que $f^2 - 4f + 3 \operatorname{Id} = \tilde{0}$. Montrer

$$\ker(f - \operatorname{Id}) \oplus \ker(f - 3\operatorname{Id}) = E.$$

Quelle transformation vectorielle réalise f?

Exercice 114.

Soient E un \mathbb{K} -espace vectoriel et p un projecteur de E. On pose $q = \operatorname{Id} - p$ et on considère

 $L = \{ f \in \mathcal{L}(E) \mid \exists u \in \mathcal{L}(E), f = u \circ p \} \text{ et } M = \{ g \in \mathcal{L}(E) \mid \exists v \in \mathcal{L}(E), g = v \circ q \}.$

Montrer que L et M sont des sous-espaces vectoriels supplémentaires de $\mathcal{L}(E)$.

Exercice 115.

Soient p et q deux projecteurs d'un \mathbb{K} -espace vectoriel E.

- 1. Montrer que p et q ont même noyau si, et seulement si, $p \circ q = p$ et $q \circ p = q$.
- 2. Énoncer une condition nécessaire et suffisante semblable pour que p et q aient même image.

Exercice 116.

Soient p,q deux projecteurs d'un \mathbb{K} -espace vectoriel E.

- 1. Montrer que p + q est un projecteur si, et seulement si, $p \circ q = q \circ p = \tilde{0}$.
- 2. Préciser alors Im(p+q) et ker(p+q).

Exercice 117.

Soit E un \mathbb{C} -espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$.

On suppose qu'il existe un projecteur p de E tel que $u = p \circ u - u \circ p$.

- 1. Montrer que $u(\ker p) \subset \operatorname{Im} p$ et $\operatorname{Im} p \subset \ker u$.
- 2. En déduire $u^2 = 0$.
- 3. Réciproque?

Exercice 118.

Soient E et F deux \mathbb{K} -espaces vectoriels de dimensions finies respectives n et p avec n > p. On considère $u \in \mathcal{L}(E,F)$ et $v \in \mathcal{L}(F,E)$ vérifiant

$$u \circ v = \mathrm{Id}_F$$

- 1. Montrer que $v \circ u$ est un projecteur.
- 2. Déterminer son rang, son image et son noyau.

Exercice 119.

Soit f un endomorphisme d'un \mathbb{K} -espace vectoriel E de dimension n. Montrer

$$f$$
 est un projecteur \iff rg f + rg(Id- f) = n

Exercice 120.

Soient p et q deux projecteurs d'un \mathbb{R} -espace vectoriel E vérifiant

$$\operatorname{Im} p \subset \ker q$$

Montrer que $p + q - p \circ q$ est un projecteur et préciser son image et son noyau.

Exercice 121.

Soit f et g deux endomorphismes d'un espace vectoriel E sur \mathbb{R} ou \mathbb{C} vérifiant $f \circ g = \mathrm{Id}$.

- 1. Montrer que $\ker(g \circ f) = \ker f$ et $\operatorname{Im}(g \circ f) = \operatorname{Im} g$.
- 2. Montrer

$$E = \ker f \oplus \operatorname{Im} g$$

- 3. Dans quel cas peut-on conclure $g = f^{-1}$?
- 4. Calculer $(g \circ f) \circ (g \circ f)$ et caractériser $g \circ f$

Exercice 122.

Soit H un hyperplan d'un \mathbb{K} -espace vectoriel de E de dimension quelconque.

Soit a un vecteur de E qui n'appartient pas à H. Montrer

$$H \oplus \operatorname{Vect}(a) = E$$

Exercice 123.

Soient H un hyperplan d'un \mathbb{K} -espace vectoriel E de dimension quelconque et D une droite vectorielle non incluse dans H. Montrer que D et H sont supplémentaires dans E.

Exercice 124.

Soient $f,g \in E^*$ telles que $\ker f = \ker g$. Montrer qu'il existe $\alpha \in \mathbb{K}$ tel que $f = \alpha g$.

Exercice 125.

Soit $e = (e_1, \dots, e_n)$ une famille de vecteurs d'un \mathbb{K} -espace vectoriel E de dimension $n \in \mathbb{N}^*$. On suppose que

$$\forall f \in E^*, f(e_1) = \ldots = f(e_n) = 0 \implies f = 0$$

Montrer que e est une base de E.

Exercice 126.

Soit E un \mathbb{K} -espace vectoriel de dimension finie, V un sous-espace vectoriel de E et $f \in \mathcal{L}(E)$. Montrer

$$V \subset f(V) \implies f(V) = V$$

Exercice 127.

Soit $f \in \mathcal{L}(E,F)$ injective. Montrer que pour tout famille (x_1,\ldots,x_p) de vecteurs de E, on a

$$rg(f(x_1),\ldots,f(x_p))=rg(x_1,\ldots,x_p)$$

Exercice 128.

Soit E un \mathbb{K} -espace vectoriel de dimension $n \ge 1$ et f un endomorphisme nilpotent non nul de E. Soit p le plus petit entier tel que $f^p = 0$.

- 1. Soit $x \notin \ker f^{p-1}$. Montrer que la famille $(x, f(x), f^2(x), \dots, f^{p-1}(x))$ est libre.
- 2. En déduire que $f^n = 0$.

Exercice 129.

Soit E un \mathbb{K} -espace vectoriel de dimension finie.

Soient $f,g \in \mathcal{L}(E)$ tels que

$$f^2 + f \circ g = Id$$

Montrer que f et g commutent.

Exercice 130.

Déterminer une base du noyau et de l'image des applications linéaires suivantes :

- 1. $f: \mathbb{R}^3 \to \mathbb{R}^3$ définie par f(x, y, z) = (y z, z x, x y)
- 2. $f: \mathbb{R}^4 \to \mathbb{R}^3$ définie par f(x, y, z, t) = (2x + y + z, x + y + t, x + z t)
- 3. $f: \mathbb{C} \to \mathbb{C}$ définie par $f(z) = z + i\bar{z}(\mathbb{C}$ est ici vu comme un \mathbb{R} -espace vectoriel).

Exercice 131.

Soient E un \mathbb{K} -espace vectoriel de dimension $n \geq 1$, f un endomorphisme nilpotent non nul de E et p le plus petit entier tel que $f^p = \tilde{0}$.

1. Montrer qu'il existe $x \in E$ tel que la famille

$$(x, f(x), f^{2}(x), \dots, f^{p-1}(x))$$

soit libre.

2. En déduire $f^n = \tilde{0}$.

Exercice 132.

Soit f un endomorphisme d'un espace vectoriel de dimension n. Montrer que $(I, f, f^2, ..., f^{n^2})$ est liée et en déduire qu'il existe un polynôme non identiquement nul qui annule f.

Exercice 133.

Soit E un plan vectoriel.

- 1. Montrer que f endomorphisme non nul est nilpotent si, et seulement si, $\ker f = \operatorname{Im} f$.
- 2. En déduire qu'un tel endomorphisme ne peut s'écrire sous la forme $f = u \circ v$ avec u et v nilpotents.

Exercice 134.

Soient a_0, a_1, \dots, a_n des éléments deux à deux distincts de \mathbb{K} .

Montrer que l'application $\varphi : \mathbb{K}_n[X] \to \mathbb{K}^{n+1}$ définie par

$$\varphi(P) = (P(a_0), P(a_1), \dots, P(a_n))$$

est un isomorphisme de K-espace vectoriel.

Exercice 135.

Soient a_0, \ldots, a_n des réels distincts et $\varphi : \mathbb{R}_{2n+1}[X] \to \mathbb{R}^{2n+2}$ définie par

$$\varphi(P) = (P(a_0), P'(a_0), \dots, P(a_n), P'(a_n))$$

Montrer que φ est bijective.

Exercice 136.

Soient E un \mathbb{K} -espace vectoriel de dimension finie et $f,g\in\mathcal{L}(E)$.

Montrer que

$$rg(f+g) \le rg(f) + rg(g)$$

puis que

$$|\operatorname{rg}(f) - \operatorname{rg}(g)| \le \operatorname{rg}(f - g)$$

Exercice 137.

Soient E et F deux \mathbb{K} -espaces vectoriels de dimension finies et $f \in \mathcal{L}(E,F), g \in \mathcal{L}(F,E)$ telles que $f \circ g \circ f = f$ et $g \circ f \circ g = g$.

Montrer que $f, g, f \circ g$ et $g \circ f$ ont même rang.

Exercice 138.

Soient $f,g \in \mathcal{L}(E)$ où E est un espace vectoriel sur \mathbb{K} de dimension finie. Montrer

$$|\operatorname{rg}(f) - \operatorname{rg}(g)| \le \operatorname{rg}(f+g) \le \operatorname{rg}(f) + \operatorname{rg}(g)$$

Exercice 139.

Soient u et v deux endomorphismes d'un espace vectoriel de dimension finie E.

1. Montrer

$$|\operatorname{rg}(u)-\operatorname{rg}(v)|\leq \operatorname{rg}(u+v)\leq \operatorname{rg}(u)+\operatorname{rg}(v)$$

2. Trouver u et v dans $\mathcal{L}(\mathbb{R}^2)$ tels que

$$rg(u + v) < rg(u) + rg(v)$$

3. Trouver deux endomorphismes u et v de \mathbb{R}^2 tels que

$$rg(u+v) = rg(u) + rg(v)$$

Exercice 140.

Soient E,F deux \mathbb{K} -espaces vectoriels de dimensions finies et $f,g\in\mathcal{L}(E,F)$. Montrer

$$rg(f+g) = rg(f) + rg(g) \iff \begin{cases} Im f \cap Im g = \{0\} \\ ker f + ker g = E \end{cases}$$

Exercice 141.

Soient f et g deux endomorphismes de E. Montrer que :

- 1. $rg(f \circ g) \leq min(rg f, rg g)$.
- 2. $\operatorname{rg}(f \circ g) \ge \operatorname{rg} f + \operatorname{rg} g \dim E$.

Exercice 142.

Soient f et g deux endomorphismes d'un \mathbb{K} -espace vectoriel E de dimension finie.

1. Montrer

$$rg(g \circ f) = rgg \iff E = Im f + ker g$$

2. Montrer

$$rg(g \circ f) = rg f \iff Im f \cap \ker g = \{0\}$$

Exercice 143.

Soient E un \mathbb{K} ev, F un sev de E et $f \in \mathcal{L}(E)$

- 1. Montrer que si $F \subset f(F)$ et F de dimension finie alors f(F) = F
- 2. Le résultat reste t-il vrais i F n'est pas de dimension finie?

Exercice 144.

Soient E un ev de dimension finie, f et g deux formes linéaires non nulles sur E. Montrer que ker f = kerg si, et seulement si, la famille (f,g) est liée.

Exercice 145.

Soit E un ev de dimension n et $f \in \mathcal{L}(E)$ de rang 1. Montrer qu'ils existent $g \in E^*$ et $a \in E$ tel que $\forall x \in Ef(x) = g(x)a$ En déduire qu'il existe $\lambda \in \mathbb{K}$ tel que $f^2 = \lambda f$

Exercice 146.

Soit $E = \mathbb{R}_n[X]$ l'espace vectoriel des polynômes de degré $\leq n$, et $f: E \to E$ définie par :

$$f(P) = P + (1 - X)P'$$
.

Montrer que $f \in L(E)$, donner une base de $\operatorname{Im} f$ et de $\ker(f)$. Correction

- 1. f est bien linéaire...
- 2. Soit P tel que f(P) = 0. Alors P vérifie l'équation différentielle

$$P+(1-X)P'=0.$$

Dont la solution est $P = \lambda(X-1)$, $\lambda \in \mathbb{R}$. Donc $\ker f$ est de dimension 1 et une base est donnée par un seul vecteur : X-1.

3. Par le théorème du rang la dimension de l'image est :

$$\dim \operatorname{Im} f = \dim \mathbb{R}_n[X] - \dim \ker f = (n+1) - 1 = n.$$

Il faut donc trouver n vecteurs linéairement indépendants dans $\operatorname{Im} f$. Évaluons $f(X^k)$, alors

$$f(X^k) = (1-k)X^k + kX^{k-1}$$
.

Cela donne f(1) = 1, f(X) = 1, $f(X^2) = -X^2 + 2X$, ... on remarque que pour k = 2, ... n, $f(X^k)$ est de degré k sans termes constant. Donc l'ensemble

$$\{f(X), f(X^2), \ldots, f(X^n)\}\$$

est une famille de n vecteurs, appartenant à $\operatorname{Im} f$, et libre (car les degrés sont distincts). Donc ils forment une base de $\operatorname{Im} f$.

Exercice 147.

Soient $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$ deux à deux distincts, pour $1 \le i \le n$, on note v_i le vecteur $v_i = (\lambda_1^{i-1}, \ldots, \lambda_n^{i-1})$ éllément de \mathbb{K}^n . Montrer de deux facons, que la famille $(v_i)_{1 \le i \le n}$ est une base de \mathbb{K}^n .

Exercice 148.

Soit *E* un ev de dimension n, f un endomorphisme de *E*. Montrer que rg $f^n = \operatorname{rg} f^{n+1}$

Exercice 149.

Soient a et b deux nombres complexes.On considère l'espace vectoriel E des suites complexes vérifiant la relation de récurrence :

$$\forall n \in \mathbb{N}^* \quad u_{n+1} = au_n + bu_{n-1}$$

Déterminer dim E.

Considérer l'application $f: E \to \mathbb{C}^2$ définie par $f((u_n)_n) = (u_0, u_1)$

Exercice 150.

Soit $f \in \mathcal{L}(\mathbb{R}^3)$ tel que $f^3 = -f$. Montrer que $\mathbb{R}^3 = \ker f \oplus Im f$.

Exercice 151.

Soit $f \in \mathcal{L}(E)$. Montrer que $\ker(f) \cap \operatorname{Im}(f) = f(\ker(f \circ f))$.

Correction Pour montrer l'égalité $\ker f \cap \operatorname{Im} f = f(\ker f^2)$, nous montrons la double inclusion. Soit $y \in \ker f \cap \operatorname{Iim} f$, alors f(y) = 0 et il existe x tel que y = f(x). De plus $f^2(x) = f(f(x)) = f(y) = 0$ donc $x \in \ker f^2$. Comme y = f(x) alors $y \in f(\ker f^2)$. Donc $\ker f \cap \operatorname{Iim} f \subset f(\ker f^2)$.

Pour l'autre inclusion, nous avons déja vu que $f(\ker f^2) \subset f(E) = \operatorname{Im} f$. De plus $f(\ker f^2) \subset \ker f$, car si $y \in f(\ker f^2)$ il existe $x \in \ker f^2$ tel que y = f(x), et $f^2(x) = 0$ implique f(y) = 0 donc $y \in \ker f$. Par conséquent $f(\ker f^2) \subset \ker f \cap \operatorname{Im} f$.

Exercice 152.

Soit E l'espace vectoriel des applications de \mathbb{R} dans \mathbb{R} , P le sous-espace des fonctions paires et I le sous-espace des fonctions impaires. Monter que $E = P \bigoplus I$. Donner l'expression du projecteur sur P de direction I.

Correction:

1. La seule fonction qui est à la fois paire et impaire est la fonction nulle : $P \cap I = \{0\}$. Montrons qu'une fonction $f : \mathbb{R} \longrightarrow \mathbb{R}$ se décompose en une fonction paire et une fonction impaire. En effet :

$$f(x) = \frac{f(x) + f(-x)}{2} + \frac{f(x) - f(-x)}{2}.$$

La fonction $x \mapsto \frac{f(x) + f(-x)}{2}$ est paire (le vérifier!), la fonction $x \mapsto \frac{f(x) - f(-x)}{2}$ est impaire. Donc P + I = E. Bilan : $E = P \oplus I$.

2. Le projecteur sur P de direction I est l'application $\pi: E \longrightarrow E$ qui à f associe la fonction $x \mapsto \frac{f(x) + f(-x)}{2}$. Nous avons bien $\pi \circ \pi = \pi$, $\pi(f) \in P$ et $\ker \pi = I$.

Exercice 153.

Soit f un endomorphisme d'un \mathbb{K} -espace vectoriel E de dimension finie.

Montrer que les assertions suivantes sont équivalentes :

- (i) $\operatorname{Im} f$ et $\ker f$ supplémentaires dans E;
- (ii) $E = \operatorname{Im} f + \ker f$;
- (iii) $\operatorname{Im} f^2 = \operatorname{Im} f$;
- (iv) $\ker f^2 = \ker f$.

Exercice 154.

Soit E un \mathbb{K} -espace vectoriel de dimension finie et $f,g\in\mathcal{L}(E)$ tels que f+g bijectif et $g\circ f=\tilde{0}$. Montrer que

$$\operatorname{rg} f + \operatorname{rg} g = \dim E$$

Exercice 155.

Soient E un \mathbb{K} -espace vectoriel de dimension finie n et f un endomorphisme de E. Montrer l'équivalence

$$\ker f = \operatorname{Im} f \iff f^2 = 0 \text{ et } n = 2\operatorname{rg}(f)$$

Exercice 156.

Soient E un \mathbb{K} -espace vectoriel de dimension $n \in \mathbb{N}^*$ et u un endomorphisme de E vérifiant $u^3 = \tilde{0}$. Établir

$$\operatorname{rg} u + \operatorname{rg} u^2 \le n$$

Exercice 157.

Soient $f,g \in \mathcal{L}(E)$ tels que

$$f + g = Id_E$$
 et $rg f + rg g = dim E$

Montrer que f et g sont des projecteurs complémentaires.

Exercice 158.

Soient $u, v \in \mathcal{L}(\mathbb{K}^n)$ tels que

$$u + v = id et rg(u) + rg(v) \le n$$

Montrer que u et v sont des projecteurs.

Exercice 159.

[Images et noyaux itérés d'un endomorphisme] Soient E un \mathbb{K} -espace vectoriel de dimension finie $n \geq 1$ et f un endomorphisme de E.

Pour tout $p \in \mathbb{N}$, on pose $I_p = \operatorname{Im} f^p$ et $N_p = \ker f^p$.

- 1. Montrer que $(I_p)_{p\geq 0}$ est décroissante tandis que $(N_p)_{p\geq 0}$ est croissante.
- 2. Montrer qu'il existe $s \in \mathbb{N}$ tel que $I_{s+1} = I_s$ et $N_{s+1} = N_s$.
- 3. Soit r le plus petit des entiers s ci-dessus considérés. Montrer que

$$\forall s \geq r, I_s = I_r \text{ et } N_s = N_r$$

4. Montrer que I_r et N_r sont supplémentaires dans E.

Exercice 160.

[Images et noyaux itérés d'un endomorphisme] Soit f un endomorphisme d'un \mathbb{K} -espace vectoriel E de dimension finie $n \ge 1$.

Pour tout $p \in \mathbb{N}$, on pose

$$I_p = \operatorname{Im} f^p \text{ et } N_p = \ker f^p$$

- 1. Montrer que les suites $(I_p)_{p\geq 0}$ et $(N_p)_{p\geq 0}$ sont respectivement décroissante et croissante et que celles-ci sont simultanément stationnaires.
- 2. On note r le rang à partir duquel les deux suites sont stationnaires. Montrer

$$I_r \oplus N_r = E$$

Exercice 161.

Soient E un \mathbb{K} -espace vectoriel de dimension finie et $f,g \in \mathcal{L}(E)$.

Soit H un supplémentaire de $\ker f$ dans E.

On considère $h: H \to E$ la restriction de $g \circ f$ à H.

1. Montrer que

$$\ker(g \circ f) = \ker h + \ker f$$

2. Observer que

$$\operatorname{rg} h \ge \operatorname{rg} f - \dim \ker g$$

3. En déduire que

$$\dim \ker(g \circ f) \leq \dim \ker g + \dim \ker f$$

Exercice 162.

Soient E, F, G, H des \mathbb{K} -espaces vectoriels de dimensions finies et $f \in \mathcal{L}(E, F)$, $g \in \mathcal{L}(F, G)$, $h \in \mathcal{L}(G, H)$ des applications linéaires. Montrer

$$rg(g \circ f) + rg(h \circ g) \le rgg + rg(h \circ g \circ f)$$

Exercice 163.

Soient $v \in \mathcal{L}(E, F)$ et $u \in \mathcal{L}(F, G)$. Établir

$$\operatorname{rg} u + \operatorname{rg} v - \dim F \le \operatorname{rg}(u \circ v) \le \min(\operatorname{rg} u, \operatorname{rg} v)$$

Exercice 164.

Soit E un \mathbb{K} -espace vectoriel de dimension finie n, f et g deux endomorphismes de E.

1. En appliquant le théorème du rang à la restriction h de f à l'image de g, montrer que

$$\operatorname{rg} f + \operatorname{rg} g - n \leq \operatorname{rg} (f \circ g)$$

2. Pour n = 3, trouver tous les endomorphismes de E tels que $f^2 = 0$.

Exercice 165.

Soit u un endomorphisme d'un \mathbb{K} -espace vectoriel E de dimension finie. Montrer

$$\forall k, \ell \in \mathbb{N}, \dim(\ker u^{k+\ell}) \leq \dim(\ker u^k) + \dim(\ker u^\ell)$$

Exercice 166.

On dit qu'une suite d'applications linéaires

$$\{0\} \xrightarrow{u_0} E_1 \xrightarrow{u_1} E_2 \xrightarrow{u_2} \cdots \xrightarrow{u_{n-1}} E_n \xrightarrow{u_n} \{0\}$$

est exacte si on a $\operatorname{Im} u_k = \ker u_{k+1}$ pour tout $k \in \{0, \dots, n-1\}$. Montrer que si tous les E_k sont de dimension finie, on a la formule dite d'Euler-Poincaré :

$$\sum_{k=1}^n (-1)^k \dim E_k = 0$$

Exercice 167.

Soient $f \in \mathcal{L}(E)$ et F un sous-espace vectoriel de E. Montrer

$$\dim \ker f \cap F \ge \dim F - \operatorname{rg} f$$

Exercice 168.

Soient E un \mathbb{K} -espace vectoriel de dimension finie et $f,g \in \mathcal{L}(E)$. Établir que

$$\dim(\ker(g \circ f)) \leq \dim(\ker g) + \dim(\ker f)$$

Exercice 169.

Soient E un \mathbb{K} -espace vectoriel de dimension finie et $f \in \mathcal{L}(E)$ tel que $\operatorname{rg}(f^2) = \operatorname{rg}(f)$.

- 1. Établir $\operatorname{Im} f^2 = \operatorname{Im} f$ et $\ker f^2 = \ker f$.
- 2. Montrer que $\operatorname{Im} f$ et $\ker f$ sont supplémentaires dans E.

Exercice 170.

Soit f un endomorphisme d'un \mathbb{K} -espace vectoriel E de dimension finie vérifiant

$$rg(f^2) = rg f$$

1. Établir

$$\operatorname{Im} f^2 = \operatorname{Im} f$$
 et $\ker f^2 = \ker f$

2. Montrer

$$\ker f \oplus \operatorname{Im} f = E$$

Exercice 171.

Soit E un \mathbb{K} -espace vectoriel de dimension finie n. Soient u et v deux endomorphismes de E tels que

$$E = \operatorname{Im} u + \operatorname{Im} v = \ker u + \ker v$$

Établir que d'une part, $\operatorname{Im} u$ et $\operatorname{Im} v$, d'autre part $\ker u$ et $\ker v$ sont supplémentaires dans E.

Exercice 172.

Soient E un \mathbb{K} -espace vectoriel de dimension finie et $f,g\in\mathcal{L}(E)$. On suppose

$$\operatorname{Im} f + \operatorname{Im} g = \ker f + \ker g = E$$

Montrer que ces sommes sont directes.

Exercice 173.

Soit f un endomorphisme d'un \mathbb{K} -espace vectoriel E vérifiant $f^3 = \mathrm{Id}_E$. Montrer

$$\ker(f - \operatorname{Id}_E) \oplus \operatorname{Im}(f - \operatorname{Id}_E) = E$$

Exercice 174.

Soient $f,g \in \mathcal{L}(E)$ tels que

$$g \circ f \circ g = f$$
 et $f \circ g \circ f = g$

1. Montrer que $\ker f = \ker g$ et $\operatorname{Im} f = \operatorname{Im} g$. On pose

$$F = \ker f = \ker g$$
 et $G = \operatorname{Im} f = \operatorname{Im} g$

2. Montrer que

$$E=F\oplus G$$

Exercice 175.

Soient f_1, \ldots, f_n des endomorphismes d'un \mathbb{K} -espace vectoriel E vérifiant

$$f_1 + \cdots + f_n = \mathrm{Id}_E$$
 et $\forall 1 \le i \ne j \le n, f_i \circ f_j = 0$

- 1. Montrer que chaque f_i est une projection vectorielle.
- 2. Montrer que $\bigoplus_{i=1}^{n} \operatorname{Im} f_i = E$.

Exercice 176.

Soient E un \mathbb{C} -espace vectoriel de dimension finie et p_1, \ldots, p_m des projecteurs de E dont la somme vaut Id_E . On note F_1, \ldots, F_m les images de p_1, \ldots, p_m . Montrer

$$E = \bigoplus_{k=1}^{m} F_k$$

Exercice 177.

Soient E, F, G trois \mathbb{K} -espaces vectoriels et $u \in \mathcal{L}(E, F)$, $v \in \mathcal{L}(F, G)$ et $w = v \circ u$. Montrer que w est un isomorphisme si, et seulement si, u est injective, v est surjective et

$$\operatorname{Im} u \oplus \ker v = F$$

Exercice 178.

Soit E un \mathbb{K} -espace vectoriel de dimension $n \in \mathbb{N}$.

Montrer qu'il existe un endomorphisme f tel que $\operatorname{Im} f = \ker f$ si, et seulement si, n est pair.

Exercice 179.

Soient E un \mathbb{K} -espace vectoriel de dimension finie $n \in \mathbb{N}^*$ et f un endomorphisme de E tel qu'il existe un vecteur $x_0 \in E$ pour lequel la famille $(x_0, f(x_0), \dots, f^{n-1}(x_0))$ soit une base de E. On note

$$\mathscr{C} = \{ g \in \mathscr{L}(E) \mid g \circ f = f \circ g \}$$

- 1. Montrer que \mathscr{C} est un sous-espace vectoriel de $\mathscr{L}(E)$.
- 2. Observer que

$$\mathscr{C} = \left\{ a_0 \operatorname{Id}_E + a_1 f + \dots + a_{n-1} f^{n-1} \mid a_0, \dots, a_{n-1} \in \mathbb{K} \right\}$$

3. Déterminer la dimension de &.

Exercice 180.

Soit E un \mathbb{K} -espace vectoriel de dimension n > 1 (avec $\mathbb{K} = \mathbb{R}$ ou \mathbb{C})

Soit f un endomorphisme de E nilpotent d'ordre n.

On note

$$\mathscr{C}(f) = \{ g \in \mathscr{L}(E) \mid g \circ f = f \circ g \}$$

- 1. Montrer que $\mathscr{C}(f)$ est un sous-espace vectoriel de $\mathscr{L}(E)$.
- 2. Soit a un vecteur de E tel que $f^{n-1}(a) \neq 0_E$. Montrer que la famille $(a, f(a), ..., f^{n-1}(a))$ constitue une base de E.
- 3. Soit $\varphi_a \colon \mathscr{C}(f) \to E$ l'application définie par $\varphi_a(g) = g(a)$. Montrer que φ_a est un isomorphisme.
- 4. En déduire que

$$\mathscr{C}(f) = \text{Vect}(\text{Id}, f, \dots, f^{n-1})$$

Exercice 181.

Soient F et G deux sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E de dimension finie E. Former une condition nécessaire et suffisante sur E et E pour qu'il existe un endomorphisme E de E tel que E et E et

Exercice 182.

Soit $f \in \mathcal{L}(\mathbb{R}^6)$ tel que $\operatorname{rg} f^2 = 3$. Quels sont les rangs possibles pour f?

Exercice 183.

Soient f et g deux endomorphismes de \mathbb{R}^3 canoniquement associés à :

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & -1 \end{pmatrix} \text{ et } B = \begin{pmatrix} -2 & 1 & 2 \\ -3 & 2 & 2 \\ -3 & 1 & 3 \end{pmatrix}$$

- 1. Montrer que f est une symétrie vectorielle dont on précisera les éléments caractéristiques.
- 2. Montrer que g est un automorphisme de \mathbb{R}^3 vérifiant $(g \mathrm{Id})^2 = 0$. Préciser g^{-1} .
- 3. On pose h = fog. Montrer que h est une symétrie vectorielle dont on précisera les éléments caractéristiques. Que remarque-t-on?
- 4. Montrer que g = foh. En déduire une définition de g.

Exercice 184.

On note φ l'endomorphisme de $\mathbb{R}_2[X]$ définit par :

$$P \longrightarrow (X+2)P'(X) + P(X-1)$$

Calculer l'image par φ des vecteurs 1, X+1 et $2X^2+4X+3$. Qu'en déduit-on?