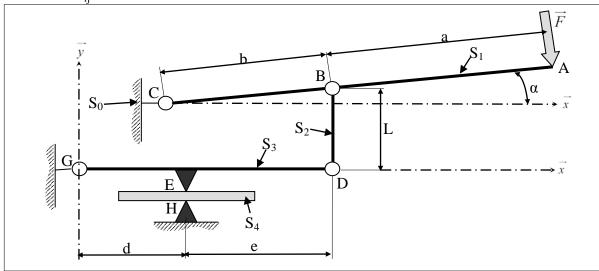
La cisaille représentée sur la figure permet d'amplifier l'effort \vec{F} exercé par l'opérateur, afin de faciliter la coupe des tôles.

L'objectif de l'étude est de déterminer l'effort de coupe au point E.

Le mécanisme est constitué de :

- Bâti $\underline{S_0}$ auquel est lié le repère $R_0(G, \vec{x}, \vec{y}, \vec{z})$ supposé galiléen ;
- Bras $\underline{S_1}$: l'action mécanique exercée par l'opérateur sur S_1 est représentée par un glisseur en A de résultante \overline{F} (de module F).
- Biellette \underline{S}_2 supposée verticale pendant la coupe ; $\overline{DB} = l \, \overline{y}$.
- Mâchoire \underline{S}_3 comportant la lame de coupe.
- Tôle à découper S₄.


Les liaisons en B, C, D et G sont des pivots parfaits d'axe $\frac{1}{2}$.

Les liaisons en E et H sont supposées ponctuelles parfaites de normale \vec{y} .

Les poids des différents solides sont négligés.

Notation

$$\left\{ \tau_{(S_i \to S_j)} \right\} = \left\{ \begin{matrix} x_{ij} \, \vec{x} + y_{ij} \, \vec{y} + z_{ij} \, \vec{z} \\ \vec{L}_{ij} \, \vec{x} + M_{ij} \, \vec{y} + N_{ij} \, \vec{z} \end{matrix} \right\}$$
Torseur de l'action mécanique du solide S_i sur S_j réduit au centre A_{ij} de leur liaison

On demande:

- 1. Dresser le schéma d'analyse de la cisaille.
- 2. Donner la forme du torseur de l'action mécanique de S_2 sur S_1 au point B, et celle de du torseur de l'action mécanique de S_3 sur S_4 au point E
- 3. Le problème étant plan, réécrire les torseurs précédents.
- 4. Isoler le solide S_1 :
 - 4.1. Ecrire le T.R.S en projection sur \vec{x} et \vec{y} .
 - 4.2. Ecrire le T.M.S au point C en projection sur \overline{z} .
- 5. En étudiant l'équilibre de S_2 , montrer que $X_{12} = 0$, et trouver la relation liant $\{\tau_{(S_1 \to S_2)}\}$ et $\{\tau_{(S_3 \to S_2)}\}$.

- 6. Exprimer alors X_{01} , Y_{01} et Y_{21} en fonction de F et des dimensions géométriques.
- 7. Appliquer le P.F.S au solide S_3 au point G et déterminer l'expression de l'effort de coupe Y_{43} , en fonction de F et des autres données.
- 8. Y'a-t-il amplification de l'effort F?