E3A 09 PSI LAMDAMETRE

A RAYON LUMINEUX

Ala	$\tau(M) = \frac{(SM)}{c}$ le chemin optique est la longueur du trajet que ferait la lumière dans le vide, pendant
	le temps qu'elle met pour faire le trajet SM dans le milieu d'indice n
A1b	$\lambda = c/v = 600 \text{ nm} = \infty = 2\pi c/\lambda \approx 3 \cdot 10^{15} \text{ rad/s}$
A1c	$\varphi(M) - \varphi(P) = \frac{2\pi(PM)}{\lambda_0}$
A2a	Surface d'onde = surface équiphase = lieu des points M tels que (SM)=constante Dans un milieu d'indice constant, (SM)= n SM. le lieu des points à égale distance de S est une sphère. Th de MALUS: les rayons lumineux sont orthogonaux aux surfaces d'onde
A2b	Collimateur (= source ponctuelle placée au foyer d'une lentille convergente)

B Interférences entre deux sources

ВІ	nterie	rences entre deux sources
	B1a	$E = 2 < s^2 >= 2 < a_1^2 \cos^2(\omega_1(t - [S_1M]/c - \phi_1) + a_2^2 \cos^2(\omega_2(t - [S_2M]/c) - \phi_2) +$
		$2a_1 a_2 \cos \omega_1(t-[S_1M]/c-\phi_1)\cos(\omega_2(t-[S_2M]/c)-\phi_2)>$
		$E=a_{1}^{2} +a_{2}^{2} +4a_{1} a_{2} < \cos \omega_{1}(t-[S_{1}M]/c-\phi_{1})\cos(\omega_{2}(t-[S_{2}M]/c)-\phi_{2}) >$
		Avec $2\cos a \cos b = \cos(a+b) + \cos(a-b)$
		$2\cos\omega(t-[S_1M]/c-\phi_1)\cos(\omega(t-[S_2M]/c)-\phi_2)=$
		$\cos((\omega_1+\omega_2)t-(\omega_1[S_1M]+\omega_2[S_2M])/c)-\phi_1-\phi_2)+\cos((\omega_1-\omega_2)t-(\omega_1[S_1M]-\omega_2[S_2M])/c)-\phi_1+\phi_2)+$ La valeur moyenne premier terme est nulle
		$E = a_1^2 + a_2^2 + 2 a_1 a_2 < \cos(\omega_{1-}\omega_{2})t - (\omega_1[S_1M] - \omega_2[S_2M])/c) - (\phi_1 - \phi_2))>$ Le terme d'interférences est le dernier terme
	B1b	Il y a interférences si $\omega_1 = \omega_2$. Sinon, les ondes sont incohérentes, la valeur moyenne du dernier
		terme est nulle : $E = \mathbf{a_1}^2 + \mathbf{a_2}^2$. C'est la somme des intensités des deux ondes, l'éclairement est
		uniforme
	B1c	Non : voir ci-dessus
	B1d	Avec des ondes de fréquences très proches, si le terme en cos varie suffisamment lentement on peut observer des « battements »
	B2a	$\phi_2(M) - \phi_1(M) = 2\pi \frac{(S_2M) - (S_1M)}{\lambda_0} + \phi_{S2} - \phi_{S1} = 2\pi \frac{\delta_{2/1}}{\lambda_0} + \phi_{S2} - \phi_{S1}$
	B2b	φ_{S2} et φ_{S1} dépendent du temps, car les sources en raison du processus d'émission des sources
	B2c	Il faut que le déphasage Φ_{12} , donc φ_{S2} - φ_{S1} ne dépende pas du temps : les sources doivent être synchrones (ou corrélées) . Il faut en outre que la ddm δ ne dépasse pas la longueur de cohérence des sources .
	В3	Le tracé est celui d'une sinusoïde . $E_{max} = E_1 + E_2 + 2\sqrt{E_1E_2}$ $E_{min} = E_1 + E_2 - 2\sqrt{E_1E_2}$
		contraste = $\frac{E_{\text{max}} - E_{\text{min}}}{E_{\text{max}} + E_{\text{min}}} = \frac{2\sqrt{E_1 E_2}}{E_1 + E_2} (<1)$
		Le contraste est maximale et vaut 1 pour $E_1=E_2$

C figures d'interférences

C1a	Les deux sources sont obtenues à partir d'une même source S ₀ , par division du front d'onde ou
	division d'amplitude $E(M) = 2E_0(1 + \cos(2\pi \frac{\delta_{2/1}}{\lambda_0}))$
C1b	$ \begin{aligned} S_1 M &= \left[(x + b/2)^2 + y^2 + D^2 \right]^{\frac{1}{2}} = D \left[1 + \left[(x + b/2)^2 + y^2 \right] / D^2 \right]^{\frac{1}{2}} \cong D \left[1 + \left[(x + b/2)^2 + y^2 \right] / 2D \\ \text{et de même} : \qquad S_2 M \cong D \left[1 + \left[(x - b/2)^2 + y^2 \right] / 2D \end{aligned} $
	et de même : $S_2M \cong D [1 + [(x-b/2)^2 + y^2]/2D$
	$\delta = S_2 M - S_1 M \cong bx/D \qquad \Longrightarrow \qquad E(M) = 2E_0 (1 + \cos(2\pi \frac{bx}{D\lambda_0}))$

	Les franges sont des franges rectilignes, parallèles à l'axe Oy (= lieu des points de même intensité =>
	x = cste
C1c	$p = \frac{\delta}{\lambda_0}$ frange brillante pour p entier : on a alors $\cos(2\pi p) = 1 =>$ intensité maximale et frange
	sombre pour p demi-entier ($\cos = -1 \Rightarrow E = E_{min}$)
C1d	Interfrange = distance séparant deux franges de même intensité \Rightarrow $i = \frac{\lambda_0 D}{b}$
C2a	$S_2M = \sqrt{(S_2C)^2 + (CM)^2 - 2S_2C.CM.\cos(\pi - \theta)} \approx CM(1 + \frac{b}{2CM}\cos\theta)$
	Et de même $S_1 M \approx CM (1 - \frac{b}{2CM} \cos \theta) \Rightarrow \delta_{2/1} = b \cos \theta$
C2b	$E(M) = 2E_0(1 + \cos(2\pi \frac{b\cos\theta}{\lambda_0})) \text{ avec } \cos\theta = \frac{D}{\sqrt{D^2 + \rho^2}}$
	$=> E(M) = 2E_0(1 + \cos(2\pi \frac{b}{\lambda_0} \frac{D}{\sqrt{D^2 + \rho^2}}))$
C2c	Le lieu des points de même intensité est défini par ρ= constante : ce sont donc des cercles de centre B
	$p = \frac{\delta}{\lambda_0} = \frac{b}{\lambda_0} \frac{D}{\sqrt{D^2 + \rho^2}}$ décroît donc a partir du centre (car \rho croit)

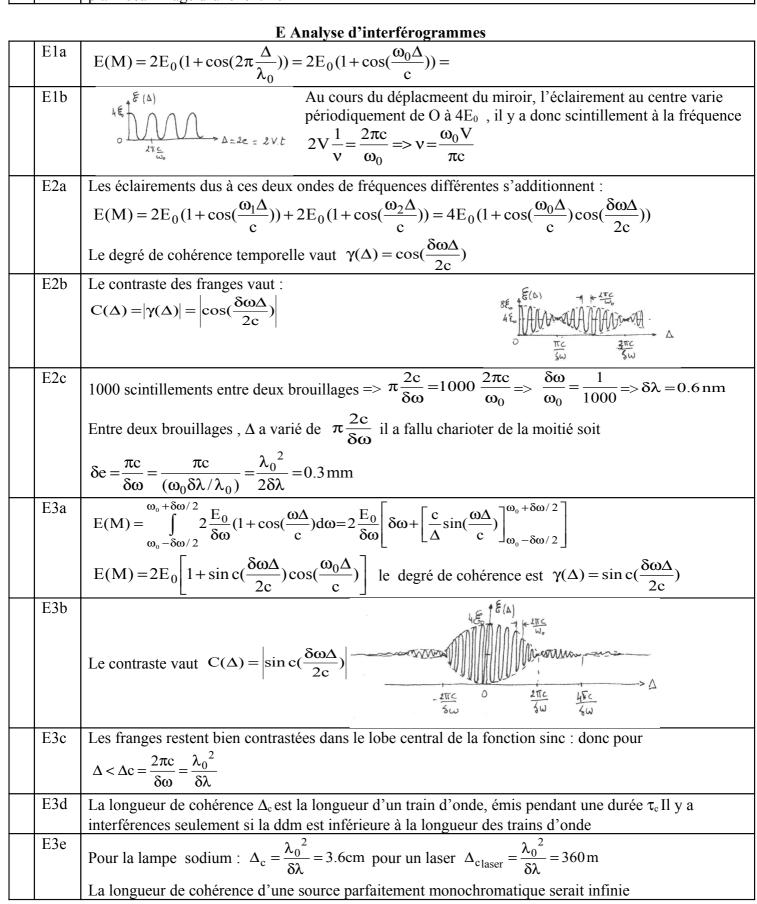
Deuxième partie : Interféromètre de Michelson

D Anneaux d'égale inclinaison

de S par la séparatrice + miroir S1 · S1 x₁=0 z₁=2(L₀+e)+ L

D1a	S1 est l' image de S par la séparatrice + miroir S1 : S1 x_1 =0, z_1 =2(L_0 +e)+ L_s
	S2 est l'image de S par la séparatrice + miroir S1 + Séparatrice S2 : $x_2=0$ $z_2=2L_0+L_s$
D11	Donc S1S2= 2e
D1b	on trace le plan d'onde orthogonal aux rayons issus de S1 et S2 et
	émergeant sous l'angle θ. Ces rayons convergent sur l'écran en M
	th de Malus => (S_2M) = (HM) donc $\delta_{1/2}$ = $(2e)\cos\theta$
	on trace le plan d'onde orthogonal aux rayons issus de S1 et S2 et émergeant sous l'angle θ . Ces rayons convergent sur l'écran en M th de Malus => (S_2M) = (HM) donc $\delta_{1/2} = (2e)\cos\theta$ et $\tan\theta = \frac{BM}{f'} = \frac{\rho}{f'}$ pour $\theta \ll f' => \theta$ petit, $\tan\theta \approx \theta$ et $\cos\theta \approx 1$ - $\theta^2/2$
	$\delta_{1/2} = 2e(1 - \frac{1}{2}(\frac{\rho}{f'})^2)$
	Pour $\rho = 0$, on a donc $\triangle = \delta(B) = 2e$
D2a	Pour $\rho = 0$, on a donc $\Delta = 8CB > -2e$ $E(M) = 2E_0(1 + \cos(2\pi \frac{\delta}{\lambda_0})) = 2E_0(1 + \cos(2\pi \frac{2e}{\lambda_0}(1 - \frac{1}{2}(\frac{\rho}{f'})^2)))$
	E est constant pour ρ = constant =< anneaux concentriques
D2b	Au centre des anneaux , $p_0 = 2e/\lambda_0$
	Le k ^{ième} anneau brillant correspond donc à $p_k = p_0$ -k $\Rightarrow \frac{2e}{\lambda_0} (1 - \frac{1}{2} (\frac{\rho}{f'})^2) = \frac{2e}{\lambda_0} - k$
	soit $\rho_k = f' \sqrt{k \frac{\lambda_0}{e}}$
D2c	? même question que le précédente (erreur d'énoncé ?)
	Le rayon du premier anneau est $\rho_1 = \mathbf{f}' \sqrt{\frac{\lambda_0}{e}}$ donc $\rho_k = \rho_1 \sqrt{k}$
D2d	Au contact optique , $e=0$, le rayon ρ_1 tend vers l'infini : on observe donc un écran uniformément
	éclairé, c'est la teinte plate.
	Un anneau est caractérisé par son ordre d'interférence $p = 2 \cos\theta / \lambda_0$. Lorsqu'on augmente e, cet
	anneau se retrouve donc pour un $\cos\theta$ plus petit, donc un θ plus grand : son rayon augmente .
	Sur l'écran de taille limitée (rayon R par exemple) , on ne voit que les k premiers anneaux, pour
	lesquels $\rho_k = \rho_1 \sqrt{k} < R$. or, pour e augmentant, ρ_1 diminue, on verra donc plus d'anneaux dans une
	région de rayon R
	Lorsque e augmente , on voit « sortir » les anneaux., leur « épaisseur » diminue , il y a plus
	d'anneaux dans le champ
D2e	Le calcul attendu est : La lame introduit une ddm $\delta = 2(n_{lame}-n_{air})e_{lame}$ (aller-retour)

	un déplacement de 16 franges correspond a une variation de δ de $16\lambda_0$ donc $n_{lame} = 1.5$
	mais,
	1)Je me demande bien comment on observe un tel déplacement brusque de 16 franges!
	2) on annonce une lame de $8 \mu m = 8 \mu m \pm 1 \mu m \Rightarrow$ est ce bien utile de sortir un Michelson pour
	trouver à 10% près l'indice d'un verre ? Qui fait vraiment cela ?
D3	Avec une source ponctuelle, les franges sont non localisées, on peut placer l'écran ou on veut . mais
	source ponctuelle = peu de lumière
	Avec une source étendue, les interférences sont localisées à l'infini, donc observables seulement au
	plan focal image d'une lentille



F Analyse spectrale de l'interférogramme

 	8
F1a	On fait ce calcul d'intégrale en linéarisant le produit de cos , ce qui fait apparaître ω - ω_0 et ω + ω_0
	On est alors ramené à intégrer des cos, comme en E3a, on fait apparaître les sinc
	$F(\omega) = E_0 \Delta_{\text{max}} \left[\sin c(\frac{\omega \Delta_{\text{max}}}{2c}) + \frac{1}{2} \sin c(\frac{(\omega - \omega_0)\Delta_{\text{max}}}{2c}) + \frac{1}{2} \sin c(\frac{(\omega + \omega_0)\Delta_{\text{max}}}{2c}) \right]$
	On obtient trosi « pics », d'amplitude $E_0\Delta_{max}$, $E_0\Delta_{max}/2$ et $E_0\Delta_{max}/2$.
	De largeur $\delta\omega_{\text{base}} = \frac{2\pi c}{\Delta_{\text{max}}}$, situé en $\omega = 0$, $\omega = \omega_0$ et $\omega = -\omega_0$
	On ne s'intéressera qu'au pic situé en ω_0 , caractéristique de la source étudiée.
	Lorsque Δ_{max} augmente, la largeur des pics diminue => ils deviennent des « raies » étroites .
F1b	Avec deux sources ω₁et ω₂, on obtient deux pics , de même largeur , centrés en ω₁et ω₂Ces deux « sinc » peuvent se recouvrir partiellement
F1c	Le critère de Rayleigh s'écrit : $\Delta \omega_{\rm R} = \omega_2 - \omega_1 = \frac{\delta \omega_{\rm base}}{2} = \frac{\pi c}{\Delta_{\rm max}}$
F2	$R = \frac{\omega_0}{\Delta \omega_R} = \frac{\omega_0 \Delta_{max}}{\pi c} \text{ or la distance entre deux max d'intensit\'e est (cfE3b)} \Delta_i = \frac{2\pi c}{\omega_0}$
	D'où $R = \frac{2\Delta_{max}}{\Delta_i}$ = nombre de max observables lors de la course entre - Δ_{max} et Δ_{max}

Troisième partie lambdamètre

1 roisieme partie fambdametre		
G1a G1b		
GIO	G. 1. a lasor1 diode1 Sp laser 2 laser 2	
G1c	Les ddm sont les mêmes	
G2	Chaque scintillement correspond à une variation de Δ =2e de λ => 2e = $p_1 \lambda_1 = p_2 \lambda_2$	
	donc $\lambda_2 = \frac{p_1}{p_2} \lambda_1 = 10.60 \mu\text{m}$ (laser infrarouge)	
G3	Le réglage des coins de cube est plus facile que celui des miroirs (faisceau systématiquement réfléchi dans la direction incidente) et ils sont plus facile à fabriquer Nécessité du vide?	
G4	Le pouvoir de résolution est élevé, car le nombre des scintillements comptés est important : , ceci car $e=p_1\lambda_1/2=1$ m	
	Cette valeur (élevée) est cependant nettement inférieure à la longueur de cohérence des lasers étudiés. => pas de pb	
G5	Chute libre => $e = \frac{1}{2}gt^2 => t_{chute} = 0.45 \text{ s} => \text{manip rapide}$	
G6	$\lambda_2 = \frac{p_1}{p_2} \lambda_1 = \frac{\Delta \lambda_2}{\lambda_2} = \frac{\Delta p_1}{p_1} + \frac{\Delta p_2}{p_2} + \frac{\Delta \lambda_1}{\lambda_1} = \frac{1}{3160556} + \frac{1}{188679} + 0 \approx 510^{-6} = \text{très bonne précision de}$	
	la mesure, on pourrait annoncer beaucoup plus de chiffres significatifs que ceux donnés en G2 (a condition de connaître λ_1 avec mieux que 4 chiffres)	