Modélisation des Actions Mécaniques

Classe:.....

Prof: Datazout Ab

On appelle action mécanique toute cause susceptible de :

-créer, modifier ou déformer le mouvement d'un corps

- maintenir un corps au repos.

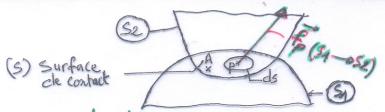
Les actions mécaniques sont de deux sortes :

- actions mécaniques de contact (liaison entre solides..), ces actions mécaniques dites également surfaciques, s'exercent au niveau d'une surface d'un solide.
- les actions mécaniques à distance, d'origine gravitationnelle ou életrique (electro-statique ou électromagnitique)

Actions mécaniques de contact I-

1- modélisation locale d'une action mécanique.

Tout contact réel entre 2 solides à lieu suivant une surface, aussi petite soit-elle. Considérons donc 2 solides S1 et S2 en contact suivant une surface S



xp: pt comant (Variable

 $\overline{f_P}(S1 \longrightarrow S2)$: desire suplimentation en chaque point P, des forces de contact de S1 sur S2. (unité: N/mm^2). ($\Lambda Pa = \Lambda N/m^2$)

2- modélisation globale d'une action mécanique. L'action mécanique de contact de S1sur S2 se représente globalement, en un point A de la surface de contact S par le torseur :

$$\left\{T(S1 \longrightarrow S2)\right\} = \left\{\frac{\overrightarrow{R}(S1 \longrightarrow S2)}{\overrightarrow{M}(A,S1 \longrightarrow S2)}\right\}$$
: Torseur d'action mécanique transmissible par S1 sur S2

Avec:
$$\vec{R}(S1 \longrightarrow S2) = ...f_{p}(S_{1}...s_{p})...ds... = \int_{S} d\vec{r}_{p} d\vec{r}_{p}$$
.

 $\vec{M}(A,S1 \longrightarrow S2) = ...f_{p}(S_{1}...s_{p})...ds$.

Remarque:

- 1- le torseur en un autre point B, s'écrit : $\{T(S1 \longrightarrow S2)\}=\{\overrightarrow{R}(S1 \longrightarrow S2)\}$
- 2- la relation de champs de moment s'écrit :

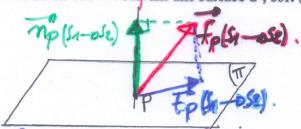
$$\overrightarrow{M}(B,S1\longrightarrow S2) = \overrightarrow{M}(A,S_1,\ldots,SR) + \overrightarrow{BA} \wedge \overrightarrow{R}(S_1 \longrightarrow SR)$$

3- Dans un repère R(A, x, y, z) associé à la liaison entre S1 et S2, on ecrit :

$$\left\{T(S1 \longrightarrow S2)\right\} = \left\{\frac{\overrightarrow{R}(S1 \longrightarrow S2)}{\overrightarrow{M}(A,S1 \longrightarrow S2)}\right\} = \left\{X_{12}\overrightarrow{x} + Y_{12}\overrightarrow{y} + Z_{12}\overrightarrow{z}\right\} = \left\{X_{12}\overrightarrow{x} + M_{12}\overrightarrow{y} + N_{12}\overrightarrow{z}\right\} = \left\{X_{12}\overrightarrow{x} + M_{12}\overrightarrow{y} + N_{12}\overrightarrow{z}\right\}$$

II Lois de coulomb

Soient 2 solides S1 et S2 en contact suivant une surface S, soit (II) le plan tangent commun à S1et S2



 $\overline{f_p}(S1 \longrightarrow S2) = \overline{f_p}(S_1 \longrightarrow S2) + \overline{f_p}(S_1 \longrightarrow S2)$

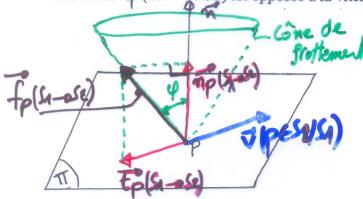
 $n_p(S1 \longrightarrow S2)$: Densité surfacique **Notant** len chaque point p, des forces de contact de S1 sur S2

 $\overline{\xi}(S1 \longrightarrow S2)$: Densité surfacique **tongentiel** en chaque point P, des forces de contact de S1 sur S2 (ET) soit $\overline{V}(P \in S2/S1)$: vitesse de glissement de S2/S1 (par def $\in T$).

 $1^{\text{er}} \text{ cas} : \text{si } \overline{V}(P \in S2/S1) \neq \overline{0}$ (glissement au pt P entre S1 et S2)

(frothement)

dans ce cas $(S1 \longrightarrow S2)$ est opposée à la vitesse de glissement, ce qui se traduit par :



Frotener
$$\overrightarrow{t_p}(S1 \longrightarrow S2) \wedge \overrightarrow{V}(P \in S2/S1) = \overrightarrow{\delta}$$
 $\overrightarrow{t_p}(S1 \longrightarrow S2) \cdot \overrightarrow{V}(P \in S2/S1) \leftarrow \overrightarrow{\delta}$
 $|\overrightarrow{t_p}(S1 \longrightarrow S2)| = f \cdot ||\overrightarrow{n_p}(S1 \longrightarrow S2)||$

 $f = \frac{1}{5}$: coef de frottement = $\frac{115p(s_1-s_2)}{15p(s_1-s_2)}$

 $\overline{f_P}(S1 \longrightarrow S2)$ se trouve sur le bord d'un cône de sommet P, d'axe \perp à Met de demi angle au sommet : appelé cône de frottement.

 $2^{\text{ème}} \text{ cas} : \text{si } \vec{V}(P \in S2/S1) = \vec{0}$: pas de glissement.

dans ce cas $\overrightarrow{f_P}(S1 \longrightarrow S2)$ se situe à l'intérieur ou à la limite sur le bord du cône d'adhérence, ce qui se traduit par:

 $||\overline{t_p}(S1 \longrightarrow S2)||$. $||f_0||_{n_p}(S1 \longrightarrow S2)||$

 $f_0 = \frac{1}{2}$ coef d'adhérence

à la limite de glissement, on a : (equilibre strict)

11 to (si-ose) = fo 1/ np (si-ose)

Remarque:

- les coefs d'adhérence et de frottement dépendent de nombreux paramètres : nature des matériaux en contact, état de surface, lubrification,.....

- le coef d'adhérence est légèrement supérieur au coef de frottement (), mais en pratique et par mesure de simplification, on considère que les 2 coef sont .

III – Action mécanique de contact ponctuel

Considérons 2 solides S1et S2 En contact ponctuel au point I, on admet qu'il existe un plan tangent commun \mathbf{T} en \mathbf{Z} , de normale \vec{n} .

Les actions mécaniques exercées par S1 sur S2 sont reprsentés par le torseur :

$$\left\{ T(S1 \longrightarrow S2) = \left\{ \begin{matrix} \overrightarrow{R}(S1 \longrightarrow S2) \\ \overrightarrow{M}(I,S1 \longrightarrow S2) \end{matrix} \right\} = \left\{ \begin{matrix} \overrightarrow{R}_N(S1 \longrightarrow S2) + \overrightarrow{R}_t(S1 \longrightarrow S2) \\ \overrightarrow{M}_P(I,S1 \longrightarrow S2) + \overrightarrow{M}_R(I,S1 \longrightarrow S2) \end{matrix} \right\}$$

def: $\overline{R}_{N}(S1 \longrightarrow S2)$: effort normal = $\overline{R}(S1 \longrightarrow S2) \cdot \overline{n}$ \overline{n} $\overline{R}_{l}(S1 \longrightarrow S2)$: effort tangentie l = $\overline{R}(S1 \longrightarrow S2) \cdot \overline{R}(S1 \longrightarrow S2)$: (e n).

 $\overline{M_P}(I,S1\longrightarrow S2)$: Moment de pi votement — [Hits: -52) $\overrightarrow{\pi}$ $\overrightarrow{M_R}(I,S1\longrightarrow S2)$: Moment de Roulement — $\overrightarrow{M}(I,S1\longrightarrow S2)$ — $\overrightarrow{M}(I,S1\longrightarrow S2)$.

le torseur cinématique du mvt de S2/S1 s'écrit aussi :

le torseur cinématique du first de SZ_{IS} ? $\left\{ V(S2/S1) \right\} = \left\{ \overrightarrow{\Omega}(S2/S1) \atop \overrightarrow{V} \left(I \in S2/S1 \right) \right\} = \left\{ \overrightarrow{\Omega}_{P}(S2/S1) + \overrightarrow{\Omega}_{R}(S2/S1) \atop \overrightarrow{V} \left(I \in S2/S1 \right) \right\}$

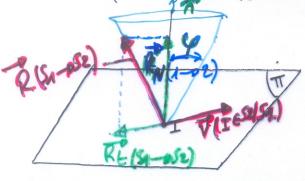
 $\overline{\Omega}_p(S2/S1)$: vecteur rotation de pivotement := $\mathbb{Z}_p(S2/S1)$.

 $\overline{V}(I \in S2/S1)$: vitesse de ... Sistement... [Par def $\in \pi$]

des lois analogues aux lois de coulomb, définissent un ensemble de relations liant les composantes des 2 torseurs (Cinematique. A. Statique), selon qu'on a : glissement, pivotement, ou roulement

a) cas de Glissement

a-1: $Si \vec{V}(I \in S2/S1) \neq \vec{0}$ (glissement au pt I entre S1 et S2) (fro Hemeur)



RELU-SE) NV (I ES/G)=8

a-2: Si $V(I \in S2/S1) = 0$ (aucun glissement relatif au pt I entre S1 et S2)

dans ce cas $\overline{R}(S1 \longrightarrow S2)$ se situe à l'intérieur ou à la limite sur le bord du cône d'adhérence,

ce qui se traduit par : 11Rt(Sy-\$52) (fo 11RN(Sy-\$50))

bi-pivotement by 10 cas: 52p(52/51) + 8 (il xa pinotement).

 $\begin{array}{c} \left| \int 2\rho(s_{2}|s_{A}) \wedge M\rho(I,s_{A}-ose) \right| = 0 \\ \int 2\rho(s_{2}|s_{A}) \cdot M\rho(I,s_{A}-ose) < 0 \\ \left| \left| M\rho(I,s_{A}-ose) \right| = S \cdot \|R_{N}(s_{A}-ose)\| \end{array}$

8 : paramètre de Resistance au pivotement (homogène à une longem).

b-2 2 mas 52p(52/5) = 0 (pas de pivotement).

11 Mp(I,S_000) (S. 11 RNS-050).

C) Routement C.1) 1er cos: SZR(54/51) + O (il xa Roulement)

 $\begin{cases} \int_{R}^{\infty} \left(\frac{s_{2}(s_{1})}{s_{1}} \right) \wedge M_{R}(I, s_{1} - os_{2}) = 0 \\ \int_{R}^{\infty} \left(\frac{s_{2}(s_{1})}{s_{1}} \right) \cdot M_{R}(I, s_{1} - os_{2}) < 0 \\ \left| \left| M_{R}(I, s_{1} - os_{2}) \right| = 2 \cdot \left| R_{N}(s_{1} - os_{2}) \right| \right| \end{cases}$

n: coef de Resistance au Roulement (homogène à une longeur).

C.2) 2 eve (as: Sep(52/54) = 0 (par de Rousement). 11 Mg (I, S1 __ 052) < 7.11 Rx (S1 _ 052) 1.

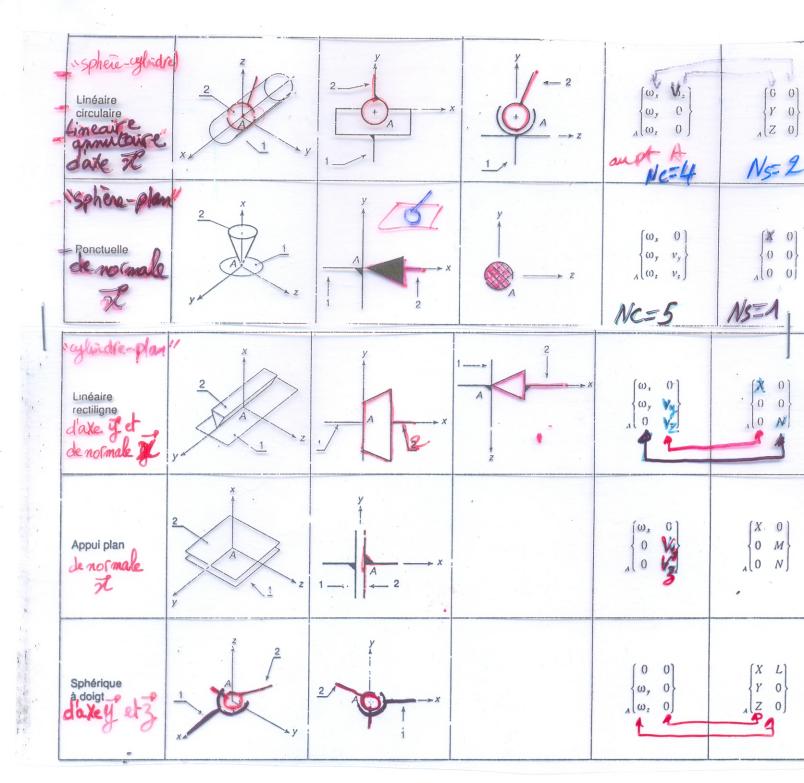
IV- Tableau des liaisons normalisées (liaisons parfaites) Voir document T004 + T003

C TS: modélications des accons mécaniques

fo: we dadherence

(TO03)

Désignation de la liaison	Symbole spatial	Symbole p	lan	Torseur cinématique associé	Torseur d'ac mécaniqu associé			
Encast ement	1 A 2	<i>y A X A X A A A A A B A B B B B B B B B B B</i>	y 1	NC= 0	X L Y M Z N			
Pivot d'axe x	1 - A - 2 - 4 - 2 - 4 - 4 - 4 - 4 - 4 - 4 - 4	-2 A	2	νc= 1 [ω, δ] ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	X O Y M Z N			
Glissière L'axe x	1 2 2 x x x x x x x x x x x x x x x x x	+ A ×	y \	$ \begin{cases} 0 & 1/2 \\ 0 & 0 \\ 0 & 0 \end{cases} $				
Hélicoïdale	Z A	pas à draite	$z \rightarrow z$	R=211 \[\begin{align*} alig	L= +			
Pivot glissant	1 A 2	1 1 X	2	$\begin{cases} \omega_x & v_x \\ 0 & 0 \\ 0 & 0 \end{cases}$ $NC = \mathcal{E}$	$\int_{A}^{0} \frac{1}{z}$			
Sphérique Roteck !! de centre A	1. 2	2 / X	$z \rightarrow z$	$ \begin{cases} \omega_x & 0 \\ \omega_y & 0 \\ \omega_z & 0 \end{cases} $	X Y A			



Roy Pour chaque liaison, ona: * Ne +Ne = 6 * {V}x{T} = 0

6/7

V - PRINCIPE FONDAMENTAL DE LA STATIQUE (P.F.S.)

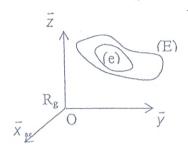
1) équilibre d'un ensemble matériel

On dit que l'ensemble materiel (E) est en équilibre par rapport à repère R si, au cours du temps, chaque point de (E) conserve une position fixe par rapport au repère R

Un solide (S) est en équilibre par rapport à un repère R, si ses paramètres de position par rapp à ce repère sont constants.

2 énoncé du P.F.S.

Il existe au moins un repère Rg, appelé repère galiléen, tel que pour tout sous ensemble matériel (e) de l'ensemble matériel (E) en équilibre par rapport à ce repère. le torseur associé aux actions mécaniques extérieures à (e) soit nul.



(h) e est tout ce qui est

extérieur à e.

Un repère lié à la terre constitue très souvent un repère galilée

On en déduit :

Le théorème de la résultante statique : TRS

Pour tout sous ensemble matériel (e) de l'ensemble matériel (E) en équilibre par rapport à un repere galiléen $R_{\rm g}$, la résultante générale du torseur associé aux actions mécaniques extérieures à (e) est nulle.

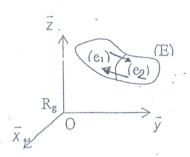
$$R(e \rightarrow e) = 6$$
 (i)

Le théorème du moment statique : TMS

Pour tout sous ensemble matériel (e) de l'ensemble matériel (E) en équilibre par rapport à un repère galiléen R_g , le moment résultant du torseur associé aux actions mécaniques extérieures à (e) est nul en tout point.

$$\overline{M}_{A}(E \rightarrow e) = 0 \quad \forall A \quad (j)$$

3] théorème des actions mutuelles



(e₁) et (e₂) sont deux sous ensembles matériel de l'ensem matériel (E) en équilibre par rapport à un repère galiléen R_g av $E = \{ e_1, e_2 \}$.

L'action mécanique du sous-ensemble matériel (e_1) sur le sous ensemble matériel (e_2) es opposée à l'action mécanique du sous ensemble matériel (e_2) sur le sous ensemble matériel (e_1)

Donc:

$$\left\{ T \left(e_2 \rightarrow e_1 \right) \right\} = -\left\{ T \left(e_1 \rightarrow e_2 \right) \right\}$$

C.P.G.E Marrakech

Torseurs cinématiques et statiques des

liaisons normalisées parfaites

Classe :

			and the second s
Liaison	Torseur cinématique	Torseur statique	Forme gardée en
Encastrement	$ \left\{ \begin{bmatrix} 0 & & 0 \\ 0 & & 0 \\ 0 & & 0 \end{bmatrix} \right. $	$ \begin{cases} X & L \\ Y & M \\ Z & N \end{cases} $	Tout point de l'espace et dans toute base
Pivot d'axe (O, \overline{z})	$ \begin{cases} 0 & & 0 \\ 0 & & 0 \\ \omega_z & & 0 \end{bmatrix} $	$\begin{bmatrix} X & L \\ Y & M \\ Z & 0 \end{bmatrix}$	Tout point de $(0,z)$ et dans toute base contenant z
Glissière de direction Z	$ \begin{cases} 0 & 0 \\ 0 & 0 \\ $	$ \begin{cases} X & L \\ Y & M \\ 0 & N \end{cases} $	Tout point de l'espace et dans toute base contenant z
Hélicoidale d'axe (O,z)	$ \left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ \omega_{z} & k \omega_{z} \end{bmatrix} \right. $	$\begin{bmatrix} X & L \\ Y & M \\ Z & -kZ \end{bmatrix}$	Tout point de l'axe $(0,z)$ et dans toute base contenant z
Pivot glissant d' axe (O,z)	$ \begin{cases} 0 & 0 \\ 0 & 0 \\ \omega_{\underline{z}} & V_{\underline{z}} \end{cases} $	$ \begin{cases} X & L \\ Y & M \\ 0 & 0 \end{cases} $	Tout point de l'axe $(0,z)$ et dans toute base contenant z
Sphérique à doigt d'axe (O,z)			Au centre O et dans toute base contenant z
Sphérique de centre O	$ \begin{cases} \omega_x & 0 \\ \omega_y & 0 \\ \omega_z & 0 \end{cases} $	$\begin{bmatrix} X & 0 \\ Y & 0 \\ Z & 0 \end{bmatrix}$	Au centre O et dans toute base
Appui plan de normale (O,\overline{z})		$ \begin{bmatrix} 0 & L \\ 0 & M \\ Z & 0 \end{bmatrix} $	Tout point de l'espace et dans toute base contenant z
Sphère cylindre d' axe (O, \overline{z})		$ \begin{bmatrix} X & 0 \\ Y & 0 \\ 0 & 0 \end{bmatrix} $	Au centre O et dans toute base contenant z
Linéaire rectiligne d'axe (O,x) et de normale (O,z)	$ \begin{bmatrix} \omega_x & V_x \\ 0 & V_y \\ \omega_z & 0 \end{bmatrix} $		Tout point du plan $(O, \overline{x}, \overline{z})$ et dans la base $(\overline{x}, -, \overline{z})$
Sphère plan de normale (O,z)	$ \begin{bmatrix} \omega_x & V_x \\ \omega_y & V_y \\ \omega_z & 0 \end{bmatrix} $	$ \begin{cases} 0 & 0 \\ 0 & 0 \\ Z & 0 \end{cases} $	Tout point de l'axe $(0,z)$ et dans toute base contenant z

 $V=\pm \frac{P}{2\pi}$