

Exercice 1 Solution

On lance un dé équilibré jusqu'à l'obtension d'un 6. Quelle est la probabilité que tous les nombres obtenus soient pairs?

Exercice 2 (Lemme de Borel Cantelli) Solution

Soit $(\Omega, \mathcal{T}, \mathbb{P})$ un espace probabilisé et $(\overline{A_n})_{n \in \mathbb{N}}$ une suite d'événements.

- $ext{ } ext{ } ext$
- $\textbf{② Montrer que, si la série} \ \sum_{n \geq 0} \mathbb{P}(A_n) \ \ \textbf{converge, alors} \ \mathbb{P}\left(\bigcap_{n \in \mathbb{N}} \bigcup_{k \geq n} A_k\right) = 0.$

Exercice 3 Solution

Une urne \overline{A} contient 6 boules blanches et 5 noires, tandis qu'une urne B contient 4 boules blanches et 8 boules noires. On transfère aléatoirement deux boules de l'urne B dans l'urne A, puis on tire une boule dans l'urne A.

- 1 Calculer la probabilité que l'on tire une boule blanche.
- ② On a tiré une boule blanche. Calculer la probabilité qu'au moins une boule blanche ait été transférée de l'urne B à l'urne A.

Exercice 4 Solution

Un fumeur essaye de ne plus fumer. S'il ne fume pas un jour donné, alors la probabilité qu'il ne fume pas le lendemain est $p \in]0,1[$. S'il fume un jour donné, alors la probabilité qu'il ne fume pas le lendemain est 1-p.

On note p_n la probabilité que cette personne ne fume pas le n-ème jour.

- ① Déterminer une relation de récurrence entre p_{n+1} et p_n .
- 2 En déduire une expression de p_n .
- 3 Calculer $\lim_{n\to+\infty} p_n$. Interpréter le résultat.

Exercice 5 Solution

Une particule se trouve à l'instant 0 au point d'abscisse a où $a \in [0, N]$. Si à l'instant n sa position est x_n , à l'instant n+1 on a $x_{n+1} = x_n + 1$ avec une probabilité p et x_{n-1} avec une probabilité 1-p. Le processus se termine lorsque $x_n = 0$ ou $x_n = N$.

Soit p_a la probabilité pour que, partant de a, le processus se termine en 0.

- ① Calculer p_0 et p_N .
- ② On suppose que 0 < a < N. Montrer que $p_a = pp_{a+1} + (1-p)p_{a-1}$.
- 3 En déduire p_a .
- \P On note q_a la probabilité pour que, partant de a, le processus se termine au point N. Calculer $p_a + q_a$. Que peut-on en déduire ?

Exercice 6 (Indicatrice d'Euler) Solution

Soit $n \ge 2$ un entier naturel. On choisit de manière équiprobable un des entiers compris entre 1 et n: Soient p un diviseur positif de n et A_p l'événement : " le nombre choisi est divisible par p".

- ① Vérifier que $P(A_p) = \frac{1}{n}$.
- 2 Soient $p_1, p_2, ..., p_r$ les diviseurs premiers de n.
- (a) Montrer que les événements $A_{p_1}, A_{p_2}, ..., A_{p_r}$ sont mutuellement indépendants.
- (b) On désigne par $\varphi(n)$ la fonction indicatrice d'Euler définie sur \mathbb{N}^* par

$$\varphi(n) = Card\{k \in [1, n], \ k \land n = 1\}$$

- i) Exprimer l'événement A " le nombre choisi est premier avec n" en fonction de $A_{p_1}, A_{p_2}, ..., A_{p_r}$.
- ii) En déduire que

$$\varphi(n) = n \prod_{i=1}^{r} \left(1 - \frac{1}{p_i} \right) = n \prod_{\substack{p \text{ premier} \\ n \text{ divise } n}} \left(1 - \frac{1}{p} \right)$$

- 2. Variables aléatoires de lois discrètes -

Exercice 7 Solution

Soit $p \in]0,1[$. On considère une pièce amenant pile avec la probabilité p. On lance cette pièce jusqu'à l'obtension pour la deuxième fois pile.

On note X le nombre de faces obtenus lors de cette expérience.

- 1 Déterminer la loi de X.
- 2 Montrer que X admet une espérance et la calculer.

Exercice 8 Solution

Soit $p \in]0,1[$ et $r \in \mathbb{N}^*$.

On dépose une bactérie dans une enceinte fermée à l'instant t=0 (le temps est exprimé en secondes). On envoie un rayon laser par seconde dans cette enceinte.

Le premier rayon laser est envoyé à l'instant t = 1.

La bactérie a la probabilité p d'être touchée par le rayon laser.

Les tirs de laser sont indépendants.

La bactérie ne meurt que lorsqu'elle a été touchée r fois par le rayon laser.

Soit X la variable aléatoire égale à la durée de vie de la bactérie.

- 1 Déterminer la loi de X.
- ② Montrer que pour tout $q \in \mathbb{N}$ et $x \in]-1,1[$, $\sum_{k\geq q} \binom{k}{q} x^{k-q}$ converge et $\sum_{k=q}^{+\infty} \binom{k}{q} x^{k-q} = \frac{1}{(1-x)^{q+1}}$.
- 3 En déduire que X admet une espérance et la calculer.

Exercice 9 Solution

Soit X_1 et X_2 deux variables aléatoires définies sur un espace probabilisé $(\Omega, \mathcal{T}, \mathbb{P})$ indépendantes suivant une loi de Bernoulli de paramètre $p \in]0,1[$.

Déterminer la loi de $Y = Min(X_1, X_2)$ ainsi que la loi de $Z = Max(X_1, X_2)$.

Exercice 10 Solution

Soit X une variable aléatoire définies sur un espace probabilisé $(\Omega, \mathcal{T}, \mathbb{P})$ suivant une loi de Poisson de paramètre $\lambda >$.

On pose $Y = \cos(\pi X)$.

- 1 Vérifier que Y est une variable aléatoire réelle.
- 2 Déterminer la loi de X.

Exercice 11 Solution

Soit n un entier tel que $n \ge 2$ et $p \in]0,1[$.

On considère n variables aléatoires $X_1, X_1, ..., X_n$ définies sur un même espace probabilisé $(\Omega, \mathcal{T}, \mathbb{P})$, mutuellement indépendantes et de même loi géométrique de paramètre p.

On considère la variable aléatoire Y_n définie par $Y_n = \min_{1 \le i \le n} (X_i)$.

- ① Soit $k \in \mathbb{N}^*$. Calculer $P(Y_n > k)$. En déduire $P(Y_n \leq k)$, puis $P(Y_n = k)$.
- 2 Reconnaitre la loi de Y_n . En déduire $E(Y_n)$ et $V(Y_n)$.

Exercice 12 Solution

① Soit X une variable aléatoire à valeurs dans \mathbb{N} .

Montrer que, pour tout $n \in \mathbb{N}^*$, on a :

$$\sum_{k=0}^{n} k \mathbb{P}(X = k) = \sum_{k=0}^{n-1} \mathbb{P}(X > k) - n \mathbb{P}(X > n)$$

- $\textbf{②} \ \ \textit{On suppose que} \ \sum_{k \geq 0} \mathbb{P}(X > k) \ \ \textit{converge.} \ \ \textit{D\'{e}montrer que} \ X \ \ \textit{admet une esp\'{e}rance.}$
- 3 Réciproquement, on suppose que X admet une espérance. Démontrer alors que $(n\mathbb{P}(X>n))_{n\in\mathbb{N}}$ $\mbox{converge vers 0, puis que la série} \sum_{k \geq 0} \mathbb{P}(X > k) \mbox{ converge, et enfin que}$

$$\mathbb{E}(X) = \sum_{k=0}^{+\infty} \mathbb{P}(X > k)$$

Exercice 13 Solution

On dispose d'une urne contenant N boules indiscernables au toucher numérotées de 1 à N. On effectue, à partir de cette urne, n tirages successifs d'une boule, avec remise, et on note X le plus grand nombre obtenu.

- ① Soit $k \in \mathbb{N}$. Que vaut $\mathbb{P}(X \leq k)$? En déduire la loi de X.
- $\textbf{② à l'aide de l'exercice précédent, vérifier que } \mathbb{E}(X) = N \sum_{l=-n}^{N-1} \left(\frac{k}{N}\right)^n.$
- 3 En déduire que $\lim_{N\to +\infty} \frac{\mathbb{E}(X)}{N} = \frac{n}{n+1}$.

Exercice 14 (D'après CNC 2017) Solution

On dispose d'un jeton non truqué à deux faces numérotées 1 et 2 et d'un dé tétraédriques (famille des pyramides de quatre faces triangulaires), équilibré, dont les faces sont numérotées de 1 à 4. On lance le jeton et on note N le numéro obtenu, puis on lance N fois le dé et pour chaque lancer, on note le numéro de la face d'appui du dé. Soit S la somme des numéros obtenus lors des ces N

lancers, (si N = 1, le dé est lancé une seule fois et S est le numéro lu sur la face d'appui du dé).

- 1 Déterminer la loi de N.
- 2 Donner la loi conditionnelle de S sachant [N=k], pour k=1, puis pour k=2.
- 3 En déduire la loi de S, puis son espérance et sa variance.

Exercice 15 (D'après CCP 2016) Solution

- ① Démontrer que la famille $\left(\frac{n+m}{2^{n+m}}\right)_{(n,m)\in\mathbb{N}^2}$ est sommable et calculer sa somme.
- 2 Soit X et Y deux variables aléatoires sur un meme espace probabilisé à valeurs dans N. On suppose que la loi conjointe du couple (X,Y) vérifie :

$$\forall (n,m) \in \mathbb{N}^2, \ \mathbb{P}(X=n,Y=m) = \frac{n+m}{2^{n+m+3}}$$

- (a) Vérifier que la relation ci-dessus définit bien une loi conjointe.
- (b) Démontrer que les variables aléatoires X et Y suivent une meme loi.
- (c) Les variables aléatoires X et Y sont-elles indépendantes.

Exercice 16 Solution

Soit X une variable aléatoire sur l'espace probabilisé $(\Omega, \mathcal{T}, \mathbb{P})$ suivant la loi de Poisson de paramètre $\lambda > 0$.

Montrer que $Y = \frac{1}{X+1}$ admet une espérance et la caculer

- 3. Variables aléatoires de lois continues

Exercice 17 Solution

Soit X une variable aléatoire réelle définie sur un espace probabilisé $(\Omega, \mathcal{T}, \mathbb{P})$ et suivant la loi uniforme sur [0,1].

Détérminer la loi de $Y = -\ln(X)$. Reconnaître la loi de Y. En déduire $\mathbb{E}(Y)$ et $\mathbb{V}(Y)$.

Exercice 18 Solution

 $Soit \ X \ une \ variable \ al\'eatoire \ r\'eelle \ d\'efinie \ sur \ un \ espace \ probabilis\'e \ (\Omega, \mathcal{T}, \mathbb{P}) \ et \ suivant \ la \ loi \ normale$ centrée réduite: $X \sim \mathcal{N}(0,1)$ si $\forall x \in \mathbb{R}, f_X(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$).

On dit qu'une variable aléatoire
$$Z$$
 suit la loi Gamma de paramètre (α,λ) où $\alpha,\lambda>0$ et on note $Z\sim\Gamma(\alpha,\lambda)$ si $f_Z(t)=egin{cases} \frac{\lambda^\alpha}{\Gamma(\alpha)}x^{\alpha-1}e^{-\lambda x}e^{-\frac{x}{2}} & si\ x>0 \\ 0 & si\ x\leq 0 \end{cases}.$

$$\mathbf{O\hat{u}} \ \forall x > 0, \Gamma(x) = \int_{0}^{+\infty} t^{x-1} e^{-t} dt.$$

- ① En utilisant, la loi normale centrée réduite, calculer $\Gamma(\frac{1}{2})$.
- ② On considère la variable aléatoire $Y = X^2$.
- (a) Exprimer F_Y en fonction de F_X .
- (b) En déduire que $Y = X^2$ suit la loi $\Gamma(\frac{1}{2}, \frac{1}{2})$.

Exercice 19 Solution

Soit X une variable aléatoire réelle définie sur un espace probabilisé $(\Omega, \mathcal{T}, \mathbb{P})$ et suivant la loi exponentielle de paramètre $\lambda > 0$.

Pour tout réel x, [x] désigne la partie entière de x.

On définit l'application Y = [X] partie entière de X.

- 1 Vérifier que Y est une variable aléatoire.
- 2 Pour tout $k \in \mathbb{N}^*$, calculer $\mathbb{P}(Y = k 1)$.
- 3 En déduire que Y+1 suit une loi géométrique dont on donnera le paramètre.
- ¶ En déduire l'espérance et la variance de Y + 1, puis l'espérance et la variance de Y.

Exercice 20 Solution

Soit X une variable aléatoire réelle et suivant la loi exponentielle de paramètre $\lambda > 0$ et Y est une variable aléatoire suivant la loi géométrique de paramètre $p \in]0,1[$ définies sur le même espace probabilisé $(\Omega, \mathcal{T}, \mathbb{P})$.

On suppose que X et Y sont indépendantes et on définit l'application T par $T = \frac{X}{V}$.

- 1 Justifier que T est une variable aléatoire réelle.
- 2 Vérifier que pour tout réel t, $(T>t)=\bigcup_{k\in\mathbb{N}^*}(Y=k)\cap(X>tk)$.

 3 En déduire que pour tout réel t, $\mathbb{P}(T>t)=\begin{cases} \frac{pe^{-\lambda t}}{1-(1-p)e^{-\lambda t}} & si\ t\geq 0\\ 1 & si\ t<0 \end{cases}$.
- 4 Montrer que T suit une loi continue, puis déterminer sa fonction de densité f_T .

Exercice 21 (D'après CNC 2019) Solution

Pour tout entier naturel n, on définit la fonction g_n de la variable réelle x par :

$$\forall x \in \mathbb{R}, g_n(x) = x^n \exp\left(-\frac{x^2}{2}\right)$$

- ① Soit $n \in \mathbb{N}$. Montrer que la fonction g_n est intégrable sur l'intervalle $[0, +\infty[$.
- 2 Pour tous a>0 et $n\in\mathbb{N}$, on pose $I_n=\int_0^{+\infty}g_n(x)dx$ et $I_n(a)=\int_0^ag_n(x)dx$.
- (a) Soit $n \in \mathbb{N}$. Pour tout a > 0, établir une relation entre les intégrales $I_n(a)$ et $I_{n+2}(a)$ à l'aide d'une intégration par parties puis en déduire que $I_{n+2} = (n+1)I_n$.
- (b) En utilisant la loi normale centrée réduite, justifier que $I_0 = \sqrt{\frac{\pi}{2}}$.
- (c) Calculer la valeur de l'intégrale I_1 et montrer que, pour tout entier naturel $n \geq 1$

$$I_{2n} = \sqrt{\frac{\pi}{2}} \frac{(2n)!}{2^n n!}$$
 et $I_{2n+1} = 2^n n!$

- 3 Soit g la fonction définie pour tout réel x par : $g(x) = \begin{cases} g_1(x) & \text{si } x \geq 0, \\ 0 & \text{si } x < 0. \end{cases}$
- (a) Démontrer que g est une densité de probabilité.
- (b) Soit X une variable aléatoire réelle admettant g comme densité de probabilité. Justifier que X admet une espérance $\mathbb{E}(X)$ et une variance $\mathbb{V}(X)$ puis préciser leur valeur.
- (c) On désigne par F et G les fonctions de répartitions respectives des variables aléatoires X et $Y=X^2$. Pour tout réel x, exprimer G(x) en fonction de $F(\sqrt{x})$, puis en déduire que Y est une variable à densité. Reconnaitre la loi de Y et donner la valeur de son espérance $\mathbb{E}(Y)$ et de sa variance $\mathbb{V}(Y)$.

4. Fonctions génératrices

Exercice 22 (D'après CCP 2019) Solution

Un sac contient quatre boules : une boule numérotée 0, deux boules numérotées 1 et une boule numérotée 2.

On effectue n tirages d'une boule avec remise et on note S_n la somme des numéros tirés.

Déterminer pour tout $t \in]-1,1[, G_{S_n}(t)]$ et en déduire la loi de S_n .

Exercice 23 Solution

 $Soient X_1, X_2, ..., X_n$ des variables aléatoires indépendantes de lois de Poisson de paramètres respectifs $\lambda_1,\lambda_2,...,\lambda_n>0$. Déterminer, en calculant sa fonction génératrice, la loi de $X_1+X_2+...+X_n$.

5. Inégalités et théorèmes limites

Exercice 24 Solution

Soit n un entier naturel et X une variable aléatoire suivant la loi géométrique $\mathcal{G}(\frac{1}{n})$.

- ① Montrer que $\mathbb{P}(X \geqslant n^2) \leqslant \frac{1}{n}$. ② Montrer que $\mathbb{P}(X \geqslant 2n) \leqslant 1 \frac{1}{n}$.

Exercice 25 Solution

 $\overline{Soit} \ (p_n)_{n \in \mathbb{N}} \ \overline{une \ suit} e \ de \ r\'eels \ de \ [0,1] \ tel \ que \lim_{n \to +\infty} np_n = \lambda \ et \ (X_n)_{n \in \mathbb{N}} \ une \ suite \ de \ variable \ al\'eatoire$ telle que X_n suit la loi binomiale de paramétre (n, p_n) .

Montrer que la suite $(X_n)_{n\in\mathbb{N}}$ converge en loi vers X où X suit la loi de Poisson de paramètre λ .

Exercice 26 Solution

Appliquer le théorème central limite à une suite $(X_n)_{n\geq 1}$ de variables aléatoires indépendantes de loi $\textit{de Poisson de paramètre 1, pour démontrer que} \ \lim_{n \to +\infty} e^{-n} \sum_{k=0}^n \frac{n^k}{k!} = \frac{1}{2}.$

Corrigés d'exercices

Espaces probabilisés

Solution de l'exercice №1 Retour à l'énoncé

Pour tout $n \geq 1$, on considère les événements A " Tous les nombres obtenus soient pairs " et A_n " Les n premiers nombres obtenus sont pairs ". Comme la suite $(A_n)_{n>1}$ est décroissante et $A=\bigcap A_n$,

alors
$$P(A) = \lim_{n \to +\infty} P(A_n) = \lim_{n \to +\infty} \left(\frac{3}{6}\right)^n = 0 \ \boxtimes$$

Solution de l'exercice Nº2 Retour à l'énoncé

① Comme les événements A_n sont deux à deux incompatibles, alors la série $\sum \mathbb{P}(A_n)$ est convergente

et sa somme est égale à $\mathbb{P}\left(\bigcup_{n\in\mathbb{N}}A_n\right)$, en particulier $\lim_{n\to+\infty}\mathbb{P}(A_n)=0$.

② On suppose que la série $\sum_{n\geq 0}^{\infty} \mathbb{P}(A_n)$ est convergente.

$$\mathbf{Pour} \ \mathbf{tout} \ n \in \mathbb{N}, \bigcap_{n \in \mathbb{N}} \bigcup_{k \geq n} A_k \subset \bigcup_{k \geq n} A_k, \ \mathbf{donc} \ 0 \leq \mathbb{P} \left(\bigcap_{n \in \mathbb{N}} \bigcup_{k \geq n} A_k \right) \leq \mathbb{P} \left(\bigcup_{k \geq n} A_k \right) \leq \sum_{k = n}^{+\infty} \mathbb{P}(A_k).$$

Puisque la série
$$\sum_{n\geq 0}\mathbb{P}(A_n)$$
 est convergente, alors $\sum_{k=n}^{+\infty}\mathbb{P}(A_k)\underset{n\to+\infty}{\longrightarrow}0$, par suite $\mathbb{P}\left(\bigcap_{n\in\mathbb{N}}\bigcup_{k\geq n}A_k\right)=0$ \boxtimes

Solution de l'exercice №3 Retour à l'énoncé

Notons B l'évènement " on a tiré une boule blanche " et pour $i \in [0, 2], A_i$ l'évènement "on a transféré

i boules blanches de l'urne B dans l'urne A".

On a $\mathbb{P}(A_0)=\frac{\binom{8}{2}}{\binom{12}{2}}=\frac{28}{66}, \ \mathbb{P}(A_1)=\frac{\binom{8}{1}\binom{4}{1}}{\binom{12}{2}}=\frac{32}{66}, \ \mathbb{P}(A_2)=\frac{\binom{4}{2}}{\binom{12}{2}}=\frac{6}{66}.$ ① Comme (A_0,A_1,A_2) est un système complet d'événements, d'après la formule des probabilités to- $\mathbf{tales} \ \mathbb{P}(B) = \mathbb{P}(B/A_0)\mathbb{P}(A_0) + \mathbb{P}(B/A_1)\mathbb{P}(A_1) + \mathbb{P}(B/A_2)\mathbb{P}(A_2) = \frac{6}{13} \times \frac{28}{66} + \frac{7}{13} \times \frac{32}{66} + \frac{8}{13} \times \frac{6}{66} = \frac{220}{429}.$

2 On utilise la formule de Bayes

$$\mathbb{P}(A_1 \cup A_2/B) = \mathbb{P}(A_1/B) + \mathbb{P}(A_2/B) = \frac{\mathbb{P}(B/A_1)\mathbb{P}(A_1)}{\mathbb{P}(B)} + \frac{\mathbb{P}(B/A_2)\mathbb{P}(A_2)}{\mathbb{P}(B)} = \frac{429}{220} \times \frac{7}{13} \times \frac{32}{66} + \frac{429}{220} \times \frac{8}{13} \times \frac{6}{66} = \frac{34}{55} \boxtimes \mathbb{P}(A_1 \cup A_2/B) = \frac{1}{12} \mathbb{P}(A_1 \cup A_2/B) + \mathbb{P}(A_1/B) + \mathbb{P}(A_1/B) + \mathbb{P}(A_1/B) = \frac{1}{12} \mathbb{P}(A_1/B) + \mathbb{P}(A_1/B) + \mathbb{P}(A_1/B) = \frac{1}{12} \mathbb{P}(A_1/B) + \mathbb{P}(A_1/B) + \mathbb{P}(A_1/B) = \frac{1}{12} \mathbb{P}(A_1/B) = \frac{1}{12} \mathbb{P}(A_1/B) + \mathbb{P}(A_1/B) = \frac{1}{12} \mathbb{P}(A_1/B) = \frac{1}{$$

Solution de l'exercice Nº 4 Retour à l'énoncé

① Notons A_n l'évènement " Cette personne ne fume pas le n-ème jour ".

Par la formule des probabilités totales, on a

$$p_{n+1} = \mathbb{P}(A_{n+1}) = \mathbb{P}(A_{n+1}/A_n)\mathbb{P}(A_n) + \mathbb{P}(A_{n+1}/A_n^c)\mathbb{P}(A_n^c) = pp_n + (1-p)(1-p_n)$$

Ainsi $p_{n+1} = (2p-1)p_n + (1-p)$.

2 On reconnait une suite arithmético-géométrique. Son expression générale est $\forall n \in \mathbb{N}^*, \ p_n = (2p-1)^n p_0 + \frac{1}{2}.$

3 On a $\lim_{n\to+\infty} p_n = \frac{1}{2}$. Lorsque n est grand, on n'a plus aucune indication permettant de savoir si la personne ne fume pas le n-ème jour ou non \boxtimes

Solution de l'exercice №5 Retour à l'énoncé

- ① $p_0 = 1$ et $p_N = 0$.
- 2 On suppose que 0 < a < N.

Notons A_a l'événement "Le processus se termine en 0, en partant de a"

 $p_a = \mathbb{P}(A_a) = \mathbb{P}(A_a/A_{a+1})\mathbb{P}(A_{a+1}) + \mathbb{P}(A_a/A_{a-1})\mathbb{P}(A_{a-1}) = pp_{a+1} + (1-p)p_{a-1}.$

3 On a $pp_{a+1} - p_a + (1-p)p_{a-1}$, donc $(p_a)_{0 \le a \le N}$ est suite réccurente linéaire d'ordre 2 d'équation caractérique (c): $pr^2 - r + (1 - p) = 0$.

On remarque que $r_1 = 1$ est une racine de (c), donc l'autre racine est $r_2 = \frac{1-p}{p}$.

• Si $p \neq \frac{1}{2}$, alors (c) admet deux racices réelles distincts r_1 et r_2 , dans ce cas $\exists \alpha, \beta \in \mathbb{R}$, tels que

 $p_a = \alpha r_1^n + \beta r_2^a = \alpha + \beta (\frac{1-p}{n})^a$. Puisque $p_0 = 1$ et $p_N = 0$, alors

$$\forall a \in \llbracket 0, N \rrbracket, p_a = \frac{\left(\frac{1-p}{p}\right)^N - \left(\frac{1-p}{p}\right)^a}{\left(\frac{1-p}{p}\right)^N - 1}$$

• Si $p = \frac{1}{2}$, alors (c) admet une racine double $r_1 = r_2 = 1$, dans ce cas $\exists \alpha, \beta \in \mathbb{R}$, tels que $p_a = (\alpha a + \beta)r_1^a = \alpha a + \beta$. Puisque $p_0 = 1$ et $p_N = 0$, alors

$$\forall a \in [0, N], p_a = \frac{N - a}{N}$$

- **4** De meme, on a $\begin{cases} q_0 = 0, \ q_N = 1 \\ \forall a \in [\![1, N-1]\!], \ q_a = pq_{a+1} + (1-p)q_a \end{cases}$
- Si $p \neq \frac{1}{2}$, on trouve

$$\forall a \in [0, N], q_a = \frac{\left(\frac{1-p}{p}\right)^a - 1}{\left(\frac{1-p}{p}\right)^N - 1}$$

- Si $p = \frac{1}{2}$, on trouve $\forall a \in [0, N], q_a = \frac{a}{N}$.
- $\forall a \in [0,N], p_a + q_a = 1$, ceci justifie bien que le processus se termine au point 0 ou $N \boxtimes$

Solution de l'exercice №6 Retour à l'énoncé

Comme p est un diviseur positif de n, $\exists q \in \mathbb{N}, n = pq$.

① Soit $c \in [1, n]$.

$$c \in A_p \iff \exists k \in \mathbb{Z}, c = kp$$

$$\iff \exists k \in [\![1,q]\!], c = kp, \ car \ 1 \leqslant c \leqslant n \Leftrightarrow 1 \leqslant kp \leqslant pq \Leftrightarrow 1 \leqslant k \leqslant q$$

$$\iff c \in \{p, 2p, 3p, ..., qp\}$$

Ainsi $A_p = \{p, 2p, 3p, ..., qp\}$, par suite $\mathbb{P}(A_p) = \frac{Card(A_p)}{Card(\llbracket 1, n \rrbracket)} = \frac{q}{n} = \frac{1}{p}$.

② (a) Montrons que les événements $A_{p_1}, A_{p_2}, ..., A_{p_r}$ sont mutuellement indépendants.

$$\textbf{Soit} \ J = \{n_1,...,n_s\} \ \textbf{une partie (fini) de} \ \llbracket 1,r \rrbracket, \ \textbf{a-t-on} \ \mathbb{P} \left(\bigcap_{1 \leqslant k \leqslant s} A_{p_{n_k}} \right) = \prod_{k=1}^s \mathbb{P}(A_{p_{n_k}})$$

$$\begin{split} c \in \bigcap_{1 \leqslant k \leqslant s} A_{p_{n_k}} &\iff \forall k \in [\![1,s]\!], c \in A_{p_{n_k}} \\ &\iff \forall k \in [\![1,s]\!], p_{n_k} \ divise \ c \\ &\iff \forall k \in [\![1,s]\!], \prod_{k=1}^s p_{n_k} \ divise \ c \end{split}$$

car des nombres premiers distincts sont premiers entre eux

$$\iff c \in A_p \ avec \ p = \prod_{k=1}^s p_{n_k}$$

Ainsi
$$\bigcap_{1\leqslant k\leqslant s}A_{p_{n_k}}=A_p$$
 avec $p=\prod_{k=1}^sp_{n_k}$

$$\mathbf{Par \ suite} \ \mathbb{P}\left(\bigcap_{1\leqslant k\leqslant s}A_{p_{n_k}}\right)=\mathbb{P}(A_p)=\frac{1}{p}=\frac{1}{\prod\limits_{k=1}^{s}p_{n_k}}=\prod_{k=1}^{s}\frac{1}{p_{n_k}}=\prod_{k=1}^{s}\mathbb{P}(A_{p_{n_k}}).$$

(b) i) Soit $k \in [1, n]$.

$$\begin{array}{lll} k \in A & \iff k \wedge n = 1 \\ & \iff \forall i \in [\![1,r]\!], k \wedge p_i = 1, \ car \ p_1, p_2, ..., p_r \ \text{les diviseurs premiers de } n \\ & \iff \forall i \in [\![1,r]\!], p_i \ \text{ne divise pas} \quad k \\ & \iff \forall i \in [\![1,r]\!], k \in (A_{p_i})^c \\ & \iff k \in \bigcap_{i=1}^r (A_{p_i})^c \end{array}$$

Ainsi $A = \bigcap_{i=1}^r (A_{p_i})^c$.

ii) On a $\mathbb{P}(A) = \frac{Card(A)}{Card(\llbracket 1,n \rrbracket)} = \frac{Card\{k \in \llbracket 1,n \rrbracket, \ k \wedge n = 1\}}{n} = \frac{\varphi(n)}{n}$.

D'autre part , puisque les événements $A_{p_1}, A_{p_2}, ..., A_{p_r}$ sont mutuelements indépendants, alors

$$\mathbb{P}(A) = \mathbb{P}\left(\bigcap_{i=1}^{r} (A_{p_i})^c\right) = \prod_{i=1}^{r} \mathbb{P}\left((A_{p_i})^c\right) = \prod_{i=1}^{r} \left(1 - \mathbb{P}(A_{p_i}) = \prod_{i=1}^{r} \left(1 - \frac{1}{p_i}\right). \text{ Par suite }$$

$$\varphi(n) = n \prod_{i=1}^{r} \left(1 - \frac{1}{p_i} \right) = n \prod_{\substack{p \ premier \\ p \ divise \ n}} \left(1 - \frac{1}{p} \right) \boxtimes$$

- Variables aléatoires de lois discrètes

Solution de l'exercice №7 Retour à l'énoncé

① On $X(\Omega) = \mathbb{N}$, soit $n \in \mathbb{N}$.

L'événement (X = n) signifie qu'on a obtenu n faces et 2 piles, dont le dernier lancé donne pile et pour la première pille, on a (n+1) possibilité, ainsi $\mathbb{P}(X=n)=(n+1)p^2(1-p)^n$.

② Montrons que la famille $(n\mathbb{P}(X=n))_{n\in\mathbb{N}}$ est sommable.

Comme $(n\mathbb{P}(X=n))_{n\in\mathbb{N}}$ est une suite positive, il suffit de montrer que la série $\sum_{n=0}^{\infty} n\mathbb{P}(X=n)$ est

convergente.

On a $\forall n \in \mathbb{N}, \ n\mathbb{P}(X=n) = p^2 n(n+1)(1-p)^n = (p^2(1-p))(n(n+1)(1-p)^{n-1}).$ Comme la série géométrique $\sum_{n\geq 0} x^n$ est de rayon 1 et sa somme $\frac{1}{1-x}$, alors la série dérivée d'ordre

2, $\sum_{n \geq 2} n(n-1)x^{n-2}$ est de rayon 1 et sa somme $\left(\frac{1}{1-x}\right)^n = \frac{2}{(1-x)^3}$, par un changement d'indice, la série

$$\sum_{n\geqslant 1} n(n+1)x^{n-1}$$
 est de rayon 1 et sa somme $\left(\frac{1}{1-x}\right)^{\prime\prime}=\frac{2}{(1-x)^3}$.

Puisque $(1-p) \in]0,1[$, alors la série $\sum_{n \geq 1} n(n+1)(1-p)^{n-1}$ converge, ainsi $\sum_{n \geq 1} n\mathbb{P}(X=n)$, converge, par

suite X admet une espérance et

$$\mathbb{E}(X) = \sum_{n=0}^{+\infty} n \mathbb{P}(X=n) = \sum_{n=1}^{+\infty} n \mathbb{P}(X=n) = p^2 (1-p) \sum_{n=1}^{+\infty} n(n+1)(1-p)^{n-1} = p^2 (1-p) \frac{2}{p^3} = \frac{2(1-p)}{p}$$

Solution de l'exercice Nº 8 Retour à l'énoncé

① On a $X(\Omega) = [r, +\infty] = \mathbb{N} \setminus [0, r-1],$ soit $n \in [r, +\infty].$

L'événement (X = n) signifie que n tirs de laser ont été nécessaires pour tuer la bactérie, C'est-à-dire que, sur les n-1 premiers tirs de laser, la bactérie est touchée (r-1) fois, non touchée ((n-1)-(r-1))fois et enfin touchée au $n^{\text{ième}}$ tir.

Sur les (n-1) premiers tirs, on a $\binom{n-1}{r-1}$ choix possibles pour les tirs de laser qui atteignent la bactérie. On en déduit alors que : $\mathbb{P}(X=n) = \binom{n-1}{r-1} p^{r-1} \times (1-p)^{(n-1)-(r-1)} \times p = \binom{n-1}{r-1} p^r (1-p)^{n-r}$.

② La série entière $\sum_{k>0} x^k$ est de rayon 1 et $\forall x \in]-1,1[,\sum_{k=0}^{+\infty} x^k = \frac{1}{1-x}]$, donc la série dérivée d'ordre q,

$$\sum_{k \geq q} (x^k)^{(q)} = \sum_{k \geq q} \frac{k!}{(k-q)!} x^{k-q} \text{ est de rayon } 1 \text{ et } \sum_{k=q}^{+\infty} \frac{k!}{(k-q)!} x^{k-q} = \left(\frac{1}{1-x}\right)^{(q)} \underset{\textbf{Récurrence sur } q}{=} \frac{q!}{(1-x)^{q+1}}$$

Il s'ensuit que pour tout $x \in]-1,1[$, $\sum_{k\geq q} \binom{k}{q} x^{k-q}$ converge et $\sum_{k=q}^{+\infty} \binom{k}{q} x^{k-q} = \frac{1}{(1-x)^{q+1}}$.

3 Comme $X(\Omega) = [r, +\infty]$ et $\forall n \geq r, \mathbb{P}(X=n)\binom{n-1}{r-1}p^r(1-p)^{n-r}$, alors

X admet une espérance

$$\iff$$

$$\iff \qquad \text{La famille } (n\mathbb{P}(X=n))_{n\geq r} \text{ est sommable} \\ \underset{\text{Car } \forall n\geq r, \ n\mathbb{P}(X=n)\geq 0}{\Longleftrightarrow} \qquad \text{La série } \sum_{n\geq r} n\mathbb{P}(X=n) \text{ converge}$$

On a $\forall n \geq r$, $n\mathbb{P}(X = n) = n\binom{n-1}{r-1}p^r(1-p)^{n-r} = rp^r(\binom{n}{r}(1-p)^{n-r})$, puisque $1-p \in]0,1[$, d'après la question précédente, la série $\sum_{r=0}^{\infty} \binom{n}{r} (1-p)^{n-r}$ converge et sa somme vaut $\frac{1}{p^{r+1}}$, par suite la série

$$\sum_{n\geq r} n\mathbb{P}(X=n) = rp^r \sum_{n\geq r} \binom{n}{r} (1-p)^{n-r} \text{ convere, ainsi } X \text{ admet une espérance et } \mathbb{E}(X) = \sum_{n=r}^{+\infty} n\mathbb{P}(X=n) = rp^r \sum_{n=r}^{+\infty} \binom{n}{r} (1-p)^{n-r} = \frac{rp^r}{p^{r+1}} = \frac{r}{p} \boxtimes$$

Solution de l'exercice №9 Retour à l'énoncé

Puisque $X_1(\Omega) = X_2(\Omega) = \{0,1\}$, alors $Y(\Omega) = Z(\Omega) = \{0,1\}$, donc Y et Z suivent une loi de Bernoulli.

- Comme $(Y = 1) = (X_1 = 1) \cap (X_2 = 1)$ et X_1, X_2 indépendantes, alors $\mathbb{P}(Y = 1) = \mathbb{P}(X_1 = 1)\mathbb{P}(X_2 = 1) = p^2$, d'où $Y \sim \mathcal{B}(p^2)$.
- Comme $(Z=0)=(X_1=0)\cap (X_2=0)$ et X_1,X_2 indépendantes, alors $\mathbb{P}(Z=1) = \mathbb{P}(X_1=0)\mathbb{P}(X_2=0) = (1-p)^2$, d'où $Z \sim \mathcal{B}(1-(1-p)^2)$

Solution de l'exercice № 10 Retour à l'énoncé

- ① L'application $f: x \mapsto \cos(\pi x)$ est continue sur \mathbb{R} et X est une variable aléatoire réelle, alors Y = f(X)est une variable aléatoire réelle.
- ② Comme $X(\Omega) = \mathbb{N}$, alors $Y(\Omega) = \{-1, +1\}$, puisque $\mathbb{P}(Y = -1) + \mathbb{P}(Y = 1) = 1$, il suffit de déterminer $\mathbb{P}(Y=1)$.

$$\begin{array}{ccc} Y=1 & \Longleftrightarrow & \cos(\pi X)=1 \\ & \Longleftrightarrow & \exists k \in \mathbb{N}, \pi X=2\pi k \\ & \Longleftrightarrow & \exists k \in \mathbb{N}, X=2k \end{array}$$

Ainsi $(Y = 1) = \bigcup_{k=0}^{\infty} (X = 2k)$, comme les événements, (X = 2k) sont deux à deux incompatibles, alors

$$\mathbb{P}(Y=1) = \mathbb{P}\left(\bigcup_{k=0}^{+\infty} (X=2k)\right) = \sum_{k=0}^{+\infty} \mathbb{P}(X=2k)$$
$$= \sum_{k=0}^{+\infty} e^{-\lambda} \frac{\lambda^{2k}}{(2k)!} = e^{-\lambda} ch(\lambda)$$

Par suite la loi de Y est caractérisé par $Y(\Omega)=\{-1,+1\},\ \mathbb{P}(Y=+1)=e^{-\lambda}ch(\lambda)$ et $\mathbb{P}(Y=+1)=e^{-\lambda}ch(\lambda)$ $1 - e^{-\lambda} ch(\lambda) = e^{-\lambda} sh(\lambda) \boxtimes$

Solution de l'exercice Nº11 Retour à l'énoncé

① Soit $k \in \mathbb{N}^*$ et $\omega \in \Omega$.

$$\omega \in (Y_n > k) \iff Y_n(\omega) > k$$

$$\iff \min_{1 \le i \le n} (X_i(\omega)) > k$$

$$\iff \forall i \in [1, n] \ X_i(\omega) > k$$

$$\iff \forall i \in [1, n] \ \omega \in (X_i > k)$$

$$\iff \omega \in \bigcap_{1 \le i \le n} (X_i > k)$$

On déduit alors que, $(Y_n > k) = \bigcap (X_i > k)$, puisque $X_1, ..., X_n$ indépendantes et de meme loi, alors

• On a
$$\mathbb{P}(Y_n>k)=\mathbb{P}(\bigcap_{1\leq i\leq n}(X_i>k))=\prod_{i=1}^n\mathbb{P}(X_i>k)=(\mathbb{P}(X_1>k))^n$$

Comme
$$\mathbb{P}(X_1 > k) = \sum_{j=k+1}^{+\infty} \mathbb{P}(X_1 = j) = \sum_{j=k+1}^{+\infty} p(1-p)^{j-1} = p \sum_{j=k}^{+\infty} (1-p)^j = p \frac{(1-p)^k}{1-(1-p)} = (1-p)^k$$

Alors $\mathbb{P}(Y_n > k) = (1 - p)^{nk}$.

- $\mathbb{P}(Y_n \le k) = 1 \mathbb{P}(Y_n > k) = 1 (1 p)^{nk}$.
- Comme $(Y_n = k) = (Y_n \le k) \setminus (Y_n \le k 1)$ et $(Y_n \le k 1) \subset (Y_n \le k)$, alors $\mathbb{P}(Y_n = k) = \mathbb{P}(Y_n \le k) \mathbb{P}(Y_n \le k 1) = (1 (1 p)^{nk}) (1 (1 p)^{n(k-1)}) = (1 p)^{n(k-1)} (1 p)^{nk}$.
- ② On a $Y_n(\Omega) = \mathbb{N}^*$ et $\forall k \in \mathbb{N}^*, \mathbb{P}(Y_n = k) = (1-p)^{n(k-1)} (1-p)^{nk} = (1-(1-p)^n)(1-(1-(1-p)^n))^{k-1}$ Ainsi Y_n suit la loi géométrique de paramétre $q = 1 (1-p)^n$. Par suite $\mathbb{E}(Y_n) = \frac{1}{q} = \frac{1}{1-(1-p)^n}$ et $\mathbb{V}(Y_n) = \frac{1-q}{q^2} = \frac{(1-p)^n}{(1-(1-p)^n)^2}$.

Solution de l'exercice № 12 Retour à l'énoncé

① **Pour tout** $k \in \mathbb{N}^*, (X = k) = (X > k - 1) \setminus (X > k)$ **et** $(X > k) \subset (X > k),$ alors $\mathbb{P}(X = k) = \mathbb{P}(X > k - 1) - \mathbb{P}(X > k)$, soit $n \in \mathbb{N}^*$

$$\begin{split} \sum_{k=0}^n k \mathbb{P}(X=k) &= \sum_{k=0}^n k (\mathbb{P}(X>k-1) - \mathbb{P}(X>k)) = \sum_{k=0}^n k \mathbb{P}(X>k-1) - \sum_{k=0}^n k \mathbb{P}(X>k) \\ &= \sum_{k=1}^n k \mathbb{P}(X>k-1) - \sum_{k=0}^n k \mathbb{P}(X>k) = \sum_{k=0}^{n-1} (k+1) \mathbb{P}(X>k) - \sum_{k=0}^n k \mathbb{P}(X>k) \\ &= \sum_{k=0}^{n-1} \left((k+1) \mathbb{P}(X>k) - k \mathbb{P}(X>k) \right) - n \mathbb{P}(X>n) = \sum_{k=0}^{n-1} \mathbb{P}(X>k) - n \mathbb{P}(X>n) \end{split}$$

② On suppose que $\sum_{k>0} \mathbb{P}(X>k)$ converge. Démontrer que X admet une espérance.

X admet une espérance \iff La famille $(k\mathbb{P}(X=k))_{k\in\mathbb{N}}$ est sommable

 \iff La série $\sum_{k>0} k\mathbb{P}(X=k)$ est convergente

 \iff La suite des sommes partielles $\left(\sum_{k=0}^{n} k \mathbb{P}(X=k)\right)$ est est majorée

D'après la question précédente, $\forall n \in \mathbb{N}$

$$\sum_{k=0}^n k \mathbb{P}(X=k) = \sum_{k=0}^{n-1} \mathbb{P}(X>k) - n \mathbb{P}(X>n) \leq \sum_{k=0}^{n-1} \mathbb{P}(X>k) \leq \sum_{k=0}^{+\infty} \mathbb{P}(X>k) = M.$$
 ③ On suppose que X admet une espérance.

Pour tout
$$n \in \mathbb{N}$$
, $\mathbb{P}(X > n) = \sum_{k=n+1}^{+\infty} \mathbb{P}(X = k)$, donc $0 \le n\mathbb{P}(X > n) = \sum_{k=n+1}^{+\infty} n\mathbb{P}(X = k) \le \sum_{k=n+1}^{+\infty} k\mathbb{P}(X = k)$.

Comme X admet une espérance, alors la série $\sum_{k\geq 0} k\mathbb{P}(X=k)$ converge, par suite le reste d'ordre n

:
$$\sum_{k=n+1}^{+\infty} k \mathbb{P}(X=k)$$
 tend vers 0, ainsi $(n\mathbb{P}(X>n))_{n\in\mathbb{N}}$ converge vers 0.

En faisant tendre n vers $+\infty$, dans l'inégalité de la question 1, on trouve

$$\mathbb{E}(X) = \sum_{k=0}^{+\infty} \mathbb{P}(X > k)$$

Solution de l'exercice Nº 13 Retour à l'énoncé

① Comme les tirages sont successifs avec remise, alors $\mathbb{P}(X \leq k) = \begin{cases} \frac{k^n}{N^n} = \left(\frac{k}{N}\right)^n & \text{si } k \in [0, N] \\ 1 & \text{si } k > N \end{cases}$.

On a $X(\Omega) = \llbracket 1, N \rrbracket$ et $\forall k \in \llbracket 1, N \rrbracket$,

Comme $(X = k) = (X \le k) \setminus (X \le k - 1)$ et $(X \le k - 1) \subset (X \le k)$, alors $\mathbb{P}(X = k) = \mathbb{P}(X \le k) - \mathbb{P}(X \le k - 1) = \left(\frac{k}{N}\right)^n - \left(\frac{k-1}{N}\right)^n$.

 $\textbf{2 Comme} \ \forall k \in \mathbb{N}, \mathbb{P}(X > k) = 1 - \mathbb{P}(X \leq k) = \begin{cases} 1 - \left(\frac{k}{N}\right)^n & si \ k \in \llbracket 0, N \rrbracket \\ 0 & si \ k > N \end{cases} = \begin{cases} 1 - \left(\frac{k}{N}\right)^n & si \ k \in \llbracket 0, N - 1 \rrbracket \\ 0 & si \ k \geq N \end{cases},$

alors la série $\sum_{k>0} \mathbb{P}(X>k)$ est convergente,

d'après l'exercice précédent, X admet une espérance et on a

$$\mathbb{E}(X) = \sum_{k=0}^{+\infty} \mathbb{P}(X > k) = \sum_{k=0}^{N-1} \mathbb{P}(X > k) = \sum_{k=0}^{N-1} \left(1 - \left(\frac{k}{N}\right)^n\right) = N - \sum_{k=0}^{N-1} \left(\frac{k}{N}\right)^n$$

3 On a
$$\lim_{N \to +\infty} \frac{\mathbb{E}(X)}{N} = \lim_{N \to +\infty} 1 - \sum_{k=0}^{N-1} \left(\frac{k}{N}\right)^n = 1 - \int_0^1 x^n dx = 1 - \frac{1}{n+1} = \frac{n}{n+1}$$

Solution de l'exercice Nº 14 Retour à l'énoncé

① On $N(\Omega) = \{0,1\}$ et $\mathbb{P}(N=0) = \mathbb{P}(N=1) = \frac{1}{2}$, donc N suit la loi de Bernoulli de paramètre $\frac{1}{2}$.

② • Si k=1, alors $S/[N=1](\Omega)=\llbracket 1,4 \rrbracket$ et pour $i\in \llbracket 1,4 \rrbracket$ $\mathbb{P}(S=i/[N=1])=\frac{1}{4}$. (S/[N=1] suit la loi uniforme sur $\llbracket 1,4 \rrbracket$)

i	1	2	3	4
$\mathbb{P}(S = i/[N = 1])$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$

• Si k=2, Notons X_1 le résultat du premier lancer et X_2 le résultat du deuxième lancer, alors $S=X_1+X_2$, donc $S/[N=2](\Omega)=[\![2,8]\!]$ et on a

j	2	3	4	5	6	7	8
Cas possibles de (X_1, X_2) tels que $X_1 + X_2 = j$	(1,1)	(1,2) (2,1)	(1,3) (2,2) (3,1)	(1,4) (2,3) (3,2) (4,1	(2,4) (3,3) (4,2)	(3,4) (4,3)	(4,4)
$\mathbb{P}(S = j/[N = 2])$	$\frac{1}{16}$	$\frac{2}{16}$	$\frac{3}{16}$	$\frac{4}{16}$	$\frac{3}{16}$	$\frac{2}{16}$	$\frac{1}{16}$

② Comme (N=1), (N=2) est un système complet d'événements et $S/[N=1](\Omega)=[\![1,4]\!]$ et $S/[N=2](\Omega)=[\![2,8]\!]$, alors $S(\Omega)=[\![1,8]\!]$, pour tout $k\in[\![1,8]\!]$, selon la formule des probabilités totales

$$\mathbb{P}(S=k) = \mathbb{P}(S=k/[N=1])\mathbb{P}(N=1) + \mathbb{P}(S=k/[N=2])\mathbb{P}(N=2) = \frac{\mathbb{P}(S=k/[N=1]) + \mathbb{P}(S=k/[N=2])}{2}$$

k	1	2	3	4	5	6	7	8
$\mathbb{P}(S=k)$	$\frac{4}{32}$	$\frac{5}{32}$	$\frac{6}{32}$	$\frac{7}{32}$	$\frac{4}{32}$	$\frac{3}{32}$	$\frac{2}{32}$	$\frac{1}{32}$

Comme $S(\Omega)$ est fini, alors $\mathbb{E}(S)$ et $\mathbb{V}(S)$ existent et on a

$$\mathbb{E}(S) = \sum_{k=1}^8 k \mathbb{P}(S=k) = \frac{15}{4}, \ \mathbb{E}(S^2) = \sum_{k=1}^8 k^2 \mathbb{P}(S=k) = \frac{35}{2} \ \text{et} \ \mathbb{V}(S) = \mathbb{E}(S^2) - (\mathbb{E}(S))^2 = \frac{55}{16} \ \boxtimes \mathbb{E}(S) = \mathbb{E}(S^2) + \mathbb{E}(S^2) = \mathbb{E}(S^2)$$

Solution de l'exercice N-15 Retour à l'énoncé

On sait que la série entière $\sum_{k\geq 0} x^k$ est de rayon 1 et $\forall x\in]-1,1[,\sum_{k=0}^{+\infty} x^k=\frac{1}{1-x},$ donc la série dérivée

$$\sum_{k \ge 0} k x^{k-1} \text{ est de rayon } 1 \text{ et } \forall x \in]-1,1[, \sum_{k=0}^{+\infty} k x^{k-1} = \left(\frac{1}{1-x}\right)' = \frac{1}{(1-x)^2}, \text{ par suite la série } \sum_{k \ge 0} k x^k \text{ est de rayon } 1 \text{ et } \forall x \in]-1,1[, \sum_{k=0}^{+\infty} k x^{k-1} = \left(\frac{1}{1-x}\right)' = \frac{1}{(1-x)^2}, \text{ par suite la série } \sum_{k \ge 0} k x^k \text{ est de rayon } 1 \text{ et } \forall x \in]-1,1[, \sum_{k=0}^{+\infty} k x^{k-1} = \left(\frac{1}{1-x}\right)' = \frac{1}{(1-x)^2}, \text{ par suite la série } \sum_{k \ge 0} k x^k \text{ est de rayon } 1 \text{ et } \forall x \in]-1,1[, \sum_{k=0}^{+\infty} k x^{k-1} = \left(\frac{1}{1-x}\right)' = \frac{1}{(1-x)^2}, \text{ par suite la série } \sum_{k \ge 0} k x^k \text{ est de rayon } 1 \text{ et } \forall x \in]-1,1[, \sum_{k=0}^{+\infty} k x^{k-1} = \left(\frac{1}{1-x}\right)' = \frac{1}{(1-x)^2}, \text{ par suite la série } \sum_{k \ge 0} k x^k \text{ est de rayon } 1 \text{ et } \forall x \in]-1,1[, \sum_{k=0}^{+\infty} k x^{k-1} = \left(\frac{1}{1-x}\right)' = \frac{1}{(1-x)^2}, \text{ par suite la série } \sum_{k \ge 0} k x^k \text{ est de rayon } 1 \text{ et } x \in]-1,1[, \sum_{k=0}^{+\infty} k x^{k-1} = \left(\frac{1}{1-x}\right)' = \frac{1}{(1-x)^2}, \text{ par suite la série } \sum_{k \ge 0} k x^k \text{ est de rayon } 1 \text{ et } x \in]-1,1[, \sum_{k=0}^{+\infty} k x^{k-1} = \left(\frac{1}{1-x}\right)' = \frac{1}{(1-x)^2}, \text{ par suite la série } \sum_{k \ge 0} k x^k \text{ est de rayon } 1 \text{ et } x \in]-1,1[, \sum_{k=0}^{+\infty} k x^{k-1} = \left(\frac{1}{1-x}\right)' = \frac{1}{(1-x)^2}, \text{ par suite la série } \sum_{k \ge 0} k x^k \text{ est de rayon } 1 \text{ et } x \in]-1,1[, \sum_{k \ge 0} k x^k + x$$

rayon 1 et
$$\forall x \in]-1,1[, \sum_{k=0}^{+\infty} kx^k = \frac{x}{(1-x)^2}.$$

① Montrons que la famille $\left(\frac{n+m}{2^{n+m}}\right)_{(n,m)\in\mathbb{N}^2}$ est sommable.

ullet Soit $m\in\mathbb{N},$ fixé. Montrons que la série $\sum_{n>0}x_{n,m}$ converge.

Pour tout $n \in \mathbb{N}$, $x_{n,m} = \frac{n+m}{2^{n+m}} = \frac{1}{2^m} \left(n(\frac{1}{2})^n + m(\frac{1}{2})^n \right)$.

Comme les séries $\sum_{n \ge 0} \left(\frac{1}{2} \right)^n$ et $\sum_{n \ge 0} n \left(\frac{1}{2} \right)^n$ convergent, alors la série $\sum_{n \ge 0} x_{n,m}$ converge et on a

$$\sum_{n=0}^{+\infty} x_{n,m} = \frac{1}{2^m} \left(\sum_{n=0}^{+\infty} n \left(\frac{1}{2} \right)^n + m \sum_{n=0}^{+\infty} \left(\frac{1}{2} \right)^n \right) = \frac{1}{2^m} \left(\frac{\frac{1}{2}}{(1-\frac{1}{2})^2} + m \frac{1}{1-\frac{1}{2}} \right) = \frac{m+1}{2^{m-1}}$$

• Montrons que la série $\sum_{n \ge 0} \left(\sum_{n=0}^{+\infty} x_{n,m} \right)$ converge.

Pour tout $m \in \mathbb{N}$, $\sum_{n=0}^{+\infty} x_{n,m} = \frac{m+1}{2^{m-1}} = m \left(\frac{1}{2}\right)^{m-1} + \left(\frac{1}{2}\right)^{m-1}$.

Comme les séries $\sum_{m\geq 0} \left(\frac{1}{2}\right)^{m-1}$ et $\sum_{m\geq 0} m\left(\frac{1}{2}\right)^{m-1}$ convergent, alors la série $\sum_{m\geq 0} \left(\sum_{n=0}^{+\infty} x_{n,m}\right)$ converge.

Par suite la famille $\binom{n+m}{2^{n+m}}_{(n,m)\in\mathbb{N}^2}$ est sommable et sa somme

$$\sum_{(n,m)\in\mathbb{N}^2} x_{n,m} = \sum_{m=0}^{+\infty} \left(\sum_{n=0}^{+\infty} x_{n,m}\right) = \sum_{m=0}^{+\infty} \frac{m+1}{2^{m-1}} = \sum_{m=0}^{+\infty} m \left(\frac{1}{2}\right)^{m-1} + \sum_{m=0}^{+\infty} \left(\frac{1}{2}\right)^{m-1} = \frac{1}{(1-\frac{1}{2})^2} + 2.\frac{1}{1-\frac{1}{2}} = 8$$

② (a) Pour tout $n, m \in \mathbb{N}$, $p_{n,m} = \frac{n+m}{2^{n+m+3}} = \frac{1}{8}x_{n,m} \ge 0$ et la famille $(p_{n,m})_{(n,m)\in\mathbb{N}^2}$ est sommable de somme 8.

Donc la famille $(p_{n,m})_{(n,m)\in\mathbb{N}^2}$ définit bien une loi conjointe.

(b) Soient $n, m \in \mathbb{N}$

$$\mathbb{P}(X=n) = \sum_{m=0}^{+\infty} \mathbb{P}(X=n,Y=m) = \sum_{m=0}^{+\infty} \frac{n+m}{2^{n+m+3}} = \frac{1}{2^{n+3}} \left(n \sum_{m=0}^{+\infty} \left(\frac{1}{2}\right)^m + \sum_{m=0}^{+\infty} m \left(\frac{1}{2}\right)^m \right) = \frac{1}{2^{n+3}} \left(2n+2\right) = \frac{n+1}{2^{n+2}} \left(2n+2\right) =$$

$$\mathbb{P}(Y=m) = \sum_{n=0}^{+\infty} \mathbb{P}(X=n,Y=m) = \sum_{n=0}^{+\infty} \frac{n+m}{2^{n+m+3}} = \frac{1}{2^{m+3}} \left(m \sum_{n=0}^{+\infty} \left(\frac{1}{2}\right)^n + \sum_{n=0}^{+\infty} n \left(\frac{1}{2}\right)^n \right) = \frac{1}{2^{m+3}} \left(2m+2\right) = \frac{m+1}{2^{m+2}} \left(2m+2\right) =$$

Comme $X(\Omega)=Y(\Omega)=\mathbb{N}$ et $\forall k\in\mathbb{N}, \mathbb{P}(X=k)=\mathbb{P}(Y=k)$, alors X et Y suivent une meme loi. (c) On a $\mathbb{P}(X=0,Y=0)=0\neq \frac{1}{16}=\mathbb{P}(X=0)\mathbb{P}(Y=0)$, donc X et Y ne sont pas indépendantes \boxtimes

Solution de l'exercice Nº 16 Retour à l'énoncé

D'après le théorème de transfert, Y admet une espérance si, et seulement si, $(\frac{1}{1+k}\mathbb{P}(X=k))_{k\in\mathbb{N}}$ est

Comme $\forall k \in \mathbb{N}, \frac{1}{1+k}\mathbb{P}(X=k) = e^{-\lambda} \frac{\lambda^k}{(k+1)k!} = \frac{e^{-\lambda}}{\lambda} \frac{\lambda^{k+1}}{(k+1)!} > 0$, il suffit de montrer que la série

 $\sum \frac{1}{1+k} \mathbb{P}(X=k)$ est convergente, par le critère d'Alembert, cette série est convergente et on a

$$\mathbb{E}(X) = \sum_{k=0}^{+\infty} \frac{1}{1+k} \mathbb{P}(X=k) = \frac{e^{-\lambda}}{\lambda} \sum_{k=0}^{+\infty} \frac{\lambda^{k+1}}{(k+1)!} = \frac{e^{-\lambda}}{\lambda} \sum_{k=1}^{+\infty} \frac{\lambda^k}{k!} = \frac{e^{-\lambda}}{\lambda} \left(e^{\lambda} - 1 \right) = \frac{1-e^{-\lambda}}{\lambda} \quad \boxtimes$$

- Variables aléatoires de lois continues

Solution de l'exercice Nº17 Retour à l'énoncé

Comme X suit la loi uniforme sur [0,1], alors $f_X(x) = \begin{cases} 1 & \text{si } x \in [0,1] \\ 0 & \text{si } x \notin [0,1] \end{cases}$

Soit $t \in \mathbb{R}$, $F_Y(t) = \mathbb{P}(Y \le t) = \mathbb{P}(-\ln(X) \le t) = \mathbb{P}(\ln(X) \ge -t) = \mathbb{P}(X \ge e^{-t}) = \int_{-\infty}^{+\infty} f_X(x) dx$.

Si t < 0, alors $e^{-t} > 1$, par suite $F_Y(t) = 0$.

Si $t \ge 0$, alors $e^{-t} \le 1$, donc $F_Y(t) = \int_{-1}^{1} dx = 1 - e^{-t}$.

 $\mathbf{D'où}\ F_Y(t) = \begin{cases} 0 & si\ t < 0 \\ 1 - e^{-t} & si\ t \geq 0 \end{cases} \mathbf{comme}\ F_Y \ \mathbf{est}\ \mathbf{continue}\ \mathbf{sur}\ \mathbb{R}\ \mathbf{et}\ \mathbf{de}\ \mathbf{classe}\ C^1\ \mathbf{sur}\ \mathbb{R}\setminus\{0\},\ \mathbf{alors}\ Y\ \mathbf{est}$

de loi continue et sa fonction de densité f_Y est donnée par $f_Y(t) = \begin{cases} 0 & si \ t \leq 0 \\ e^{-t} & si \ t > 0 \end{cases}$.

Ainsi Y suit la loi exponentielle de paramétre $\lambda=1$, par suite $\mathbb{E}(Y)=\frac{1}{\lambda}=1$ et $\mathbb{V}(Y)=\frac{1}{\lambda^2}=1$ \boxtimes

Solution de l'exercice Nº 18 Retour à l'énoncé

Comme X suit la loi normale centrée réduite, alors $\forall x \in \mathbb{R}, f_X(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$ et $F_X(x) = \int_{-\infty}^{x} f_X(t)dt$.

En particulier $\int_{-\infty}^{+\infty} f_X(u) du = 1$.

1 On a

$$\Gamma\left(\frac{1}{2}\right) = \int_0^{+\infty} \frac{e^{-t}}{\sqrt{t}} dt \qquad = \int_0^{+\infty} \frac{e^{-\frac{u^2}{2}}}{\frac{u}{\sqrt{2}}} (u du) = \sqrt{2} \int_0^{+\infty} e^{-\frac{u^2}{2}} du = \sqrt{2} \sqrt{2\pi} \int_0^{+\infty} f_X(u) du$$

$$= \int_0^{+\infty} \frac{e^{-t}}{\sqrt{t}} dt \qquad = \int_0^{+\infty} \int_0^{+\infty} \frac{e^{-\frac{u^2}{2}}}{\sqrt{2}} (u du) = \sqrt{2} \int_0^{+\infty} e^{-\frac{u^2}{2}} du = \sqrt{2} \sqrt{2\pi} \int_0^{+\infty} f_X(u) du$$

$$= \int_0^{+\infty} \frac{e^{-t}}{\sqrt{t}} dt \qquad = \int_0^{+\infty} \frac{e^{-\frac{u^2}{2}}}{\sqrt{2}} (u du) = \sqrt{2} \int_0^{+\infty} e^{-\frac{u^2}{2}} du = \sqrt{2} \sqrt{2\pi} \int_0^{+\infty} f_X(u) du$$

$$= \int_0^{+\infty} \frac{e^{-t}}{\sqrt{t}} dt \qquad = \int_0^{+\infty} \frac{e^{-\frac{u^2}{2}}}{\sqrt{2}} du = \sqrt{2} \sqrt{2\pi} \int_0^{+\infty} f_X(u) du$$

$$= \int_0^{+\infty} \frac{e^{-t}}{\sqrt{t}} dt \qquad = \int_0^{+\infty} \frac{e^{-\frac{u^2}{2}}}{\sqrt{2}} du = \sqrt{2} \sqrt{2\pi} \int_0^{+\infty} f_X(u) du$$

$$= \int_0^{+\infty} \frac{e^{-t}}{\sqrt{t}} dt \qquad = \int_0^{+\infty} \frac{e^{-t}}{\sqrt{t}} du = \sqrt{2} \sqrt{2\pi} \int_0^{+\infty} f_X(u) du = \sqrt{2} \int_0^{+\infty}$$

② (a) Soit $x \in \mathbb{R}$, $F_Y(x) = \mathbb{P}(Y \le x) = \mathbb{P}(X^2 \le x)$.

Si x < 0, alors $(X^2 \le x) = \varnothing$, d'où $F_Y(x) = 0$. Si $x \ge 0$, alors $(X^2 \le x) = (-\sqrt{x} \le X \le \sqrt{x})$,

$$\mathbf{d'où} \ F_{Y}(x) = \int_{-\sqrt{x}}^{\sqrt{x}} f_{X}(t)dt = 2 \int_{0}^{\sqrt{x}} f_{X}(t)dt = 2 \left(\int_{-\infty}^{\sqrt{x}} f_{X}(t)dt - \int_{-\infty}^{0} f_{X}(t)dt \right) = 2 \left(F_{X}(\sqrt{x}) - \frac{1}{2} \right).$$

Ainsi $F_Y(x) = \begin{cases} \stackrel{\cdot}{2} F_X(\sqrt{x}) - 1 & si \ x \ge 0 \\ 0 & si \ x < 0 \end{cases}$

(b) On a F_Y est continue sur \mathbb{R} , puisque F_X est de classe C^1 sur \mathbb{R} et $u\mapsto \sqrt{u}$ est de classe C^1 sur $[0,+\infty[$, alors F_Y est de classe C^1 sur $\mathbb{R}\setminus\{0\}$, ainsi Y suit une loi à densité f_Y donée par :

$$\begin{array}{ll} f_Y(x) & = & \begin{cases} \left(2F_X(\sqrt{x}) - 1\right)' & si \; x > 0 \\ 0 & si \; x \leq 0 \end{cases} = \begin{cases} 2\frac{1}{2\sqrt{x}}F_X^{'}(\sqrt{x}) & si \; x > 0 \\ 0 & si \; x \leq 0 \end{cases} = \begin{cases} \frac{1}{\sqrt{2\pi x}}e^{-\frac{x}{2}} & si \; x > 0 \\ 0 & si \; x \leq 0 \end{cases} \\ & = & \begin{cases} \left(\frac{1}{2}\right)^{\frac{1}{2}}}{\Gamma(\frac{1}{2})}x^{\frac{1}{2} - 1}e^{-\frac{x}{2}} & si \; x > 0 \\ 0 & si \; x \leq 0 \end{cases} \\ & = & \begin{cases} 3e^{-\frac{1}{2}} & si \; x > 0 \\ 0 & si \; x \leq 0 \end{cases} \\ & = & \begin{cases} 3e^{-\frac{1}{2}} & si \; x > 0 \\ 0 & si \; x \leq 0 \end{cases} \\ & = & \begin{cases} 3e^{-\frac{1}{2}} & si \; x > 0 \\ 0 & si \; x \leq 0 \end{cases} \\ & = & \begin{cases} 3e^{-\frac{1}{2}} & si \; x > 0 \\ 0 & si \; x \leq 0 \end{cases} \\ & = & \begin{cases} 3e^{-\frac{1}{2}} & si \; x > 0 \\ 0 & si \; x \leq 0 \end{cases} \\ & = & \begin{cases} 3e^{-\frac{1}{2}} & si \; x > 0 \\ 0 & si \; x \leq 0 \end{cases} \\ & = & \begin{cases} 3e^{-\frac{1}{2}} & si \; x > 0 \\ 0 & si \; x \leq 0 \end{cases} \\ & = & \begin{cases} 3e^{-\frac{1}{2}} & si \; x > 0 \\ 0 & si \; x \leq 0 \end{cases} \\ & = & \begin{cases} 3e^{-\frac{1}{2}} & si \; x > 0 \\ 0 & si \; x \leq 0 \end{cases} \\ & = & \begin{cases} 3e^{-\frac{1}{2}} & si \; x > 0 \\ 0 & si \; x \leq 0 \end{cases} \\ & = & \begin{cases} 3e^{-\frac{1}{2}} & si \; x > 0 \\ 0 & si \; x \leq 0 \end{cases} \\ & = & \begin{cases} 3e^{-\frac{1}{2}} & si \; x > 0 \\ 0 & si \; x \leq 0 \end{cases} \\ & = & \begin{cases} 3e^{-\frac{1}{2}} & si \; x > 0 \\ 0 & si \; x \leq 0 \end{cases} \\ & = & \begin{cases} 3e^{-\frac{1}{2}} & si \; x > 0 \\ 0 & si \; x \leq 0 \end{cases} \\ & = & \begin{cases} 3e^{-\frac{1}{2}} & si \; x > 0 \\ 0 & si \; x \leq 0 \end{cases} \\ & = \end{cases}$$

Il s'ensuit que $Y \sim \Gamma(\frac{1}{2}, \frac{1}{2}) \boxtimes$

Solution de l'exercice Nº 19 Retour à l'énoncé

① Comme $\varphi: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto [x] \end{cases}$ est croissante sur $\mathbb R$ et X est une variable aléatoire réelle, alors $Y=\varphi(X)$ est une variable aléatoire réelle.

2 Pour tout $k \in \mathbb{N}^*$, $(Y = k - 1) = ([X] = k - 1) = (k - 1 \le X < k)$.

 $\mathbf{Donc} \ \mathbb{P}(Y = k - 1) = \mathbb{P}(k - 1 \le X < k) = \int_{k - 1}^k \lambda e^{-\lambda x} dx = \left[-e^{-\lambda x} \right]_{k - 1}^k = e^{-\lambda (k - 1)} - e^{-\lambda k}.$

3 Pour tout $k \in \mathbb{N}^*$, $\mathbb{P}(Y+1=k) = e^{-\lambda(k-1)} - e^{-\lambda k} = (1-e^{-\lambda})e^{-\lambda(k-1)} = (1-e^{-\lambda})(1-(1-e^{-\lambda}))^{k-1}$, donc Y+1 suit la loi géométrique de paramètre $(1-e^{-\lambda})$ Y+1 suit la loi géométrique de paramètre $(1-e^{-\lambda})$.

Solution de l'exercice Nº 20 Retour à l'énoncé

① L'application $\varphi: \begin{cases} \mathbb{R} \times \mathbb{R}^* \to \mathbb{R} \\ (x,y) \mapsto \frac{x}{y} \end{cases}$ est continue sur $\mathbb{R} \times \mathbb{R}^*$ (c'est une fraction rationnelle en x,y) et

X,Y deux variables aléatoires réelles tels que $Y(\Omega)=\mathbb{N}^*\subset\mathbb{R}^*$, alors $T=\varphi(X,Y)$ est une variable aléatoire réelle.

② Comme Y suit la loi géométrique, alors $Y(\Omega) = \mathbb{N}^* = \bigcup \{k\},$

$$\mathbf{donc}\ \Omega = Y^{-1}\left(\bigcup_{k\in\mathbb{N}^*}k\right) = \bigcup_{k\in\mathbb{N}^*}Y^{-1}(\{k\}) = \bigcup_{k\in\mathbb{N}^*}(Y=k).$$

$$\mathbf{Soit}\ t \in \mathbb{R},\ (T>t) = (T>t) \cap \Omega = (T>t) \cap \left(\bigcup_{k \in \mathbb{N}^*} (Y=k)\right) = \bigcup_{k \in \mathbb{N}^*} (T>t) \cap (Y=k) = \bigcup_{k \in \mathbb{N}^*} (X>tk) \cap (Y=k).$$

3 Soit $t \in \mathbb{R}$, comme X et Y sont indépendantes et les événements $(X > tk) \cap (Y = k)$ sont deux à deux incompatibles, alors

$$\mathbb{P}(T>t) = \mathbb{P}\left(\bigcup_{k\in\mathbb{N}^*} (X>tk)\cap (Y=k)\right) = \sum_{k=1}^{+\infty} \mathbb{P}((X>tk)\cap (Y=k)) = \sum_{k=1}^{+\infty} \mathbb{P}(X>tk)\mathbb{P}(Y=k).$$
 Puisque X suit la loi exponentielle de paramètre λ , alors sa fonction de densité est donnée par

Puisque X suit la loi exponentielle de paramètre λ , alors sa fonction de densité est donnée paramètre λ suit λ

Si
$$t \ge 0$$
, alors $tk \ge 0$, donc $\mathbb{P}(X > tk) = \int_{tk}^{+\infty} \lambda e^{-\lambda x} dx = \left[-e^{-\lambda x} \right]_{tk}^{+\infty} = e^{-\lambda tk}$.

Comme Y suit la loi géométrique de paramètre p, alors $\mathbb{P}(Y=k)=p(1-p)^{k-1}$.

$$\mathbf{Par \ suite} \ \mathbb{P}(T>t) = \sum_{k=1}^{+\infty} e^{-\lambda t k} p (1-p)^{k-1} = \frac{p}{1-p} \sum_{k=1}^{+\infty} \left((1-p) e^{-\lambda t} \right)^k \underset{0 < (1-p) e^{-\lambda t} < 1}{=} \frac{p}{(1-p)} \frac{(1-p) e^{-\lambda t}}{1-(1-p) e^{-\lambda t}}$$

D'où
$$\mathbb{P}(T > t) = \frac{pe^{-\lambda t}}{1 - (1 - p)e^{-\lambda t}}$$

$$\mathbf{Si}\ t<0,\ \mathbf{alors}\ tk<0,\ \mathbf{donc}\ \mathbb{P}(X>tk)=\int_0^{+\infty}\lambda e^{-\lambda x}dx=\left[-e^{-\lambda x}\right]_0^{+\infty}=1.$$

Par suite
$$\mathbb{P}(T > t) = \sum_{k=1}^{+\infty} p(1-p)^{k-1} = 1$$
.

4 Soit
$$t \in \mathbb{R}$$
, $F_T(t) = \mathbb{P}(T \le t) = 1 - \mathbb{P}(T > t) = \begin{cases} 1 - \frac{pe^{-\lambda t}}{1 - (1 - p)e^{-\lambda t}} & si \ t \ge 0\\ 0 & si \ t < 0 \end{cases}$

Comme F_T est continue sur $\mathbb R$ et de classe sur $\mathbb R\setminus\{0\}$, alors T suit une loi continue et sa fonction de densité f_T est donnée par : $f_T(t) = \begin{cases} F_T^{'}(t) & si \ t > 0 \\ 0 & si \ t \leq 0 \end{cases} = \begin{cases} \frac{\lambda pe^{-\lambda t}}{(1-(1-p)e^{-\lambda t})^2} & si \ t > 0 \\ 0 & si \ t \leq 0 \end{cases} \boxtimes$

Solution de l'exercice №21 Retour à l'énoncé

① Soit $n \in \mathbb{N}$. La fonction g_n est continue sur $[0, +\infty[$ (donc le problème se pose au voisinage de $+\infty$), comme $x^2g_n(x) = x^{n+2}e^{-\frac{x^2}{2}} \underset{x \to +\infty}{\to} 0$ et $\alpha = 2 > 1$, alors g_n est intégrable sur $[0, +\infty[$.

2 Soit $n \in \mathbb{N}$,

(a) Pour tout a > 0,

$$I_{n+2}(a) = \int_0^a g_{n+2}(x)dx = \int_0^a x^{n+2} e^{-\frac{x^2}{2}} dx = -\int_0^a x^{n+1} \left(e^{-\frac{x^2}{2}}\right)' dx$$

$$\stackrel{=}{\underset{I.P.P}{=}} -\left[x^{n+1} e^{-\frac{x^2}{2}}\right]_0^a + (n+1) \int_0^a x^n e^{-\frac{x^2}{2}} dx$$

$$= -a^{n+1} e^{-\frac{a^2}{2}} + (n+1) I_n(a)$$

Ainsi $I_{n+2}(a) = -a^{n+1}e^{-\frac{a^2}{2}} + (n+1)I_n(a)$.

Pour tout $n \in \mathbb{N}, g_n$ est intégrabale, en faissant tendre a vers $+\infty$, on trouve $I_{n+2}=(n+1)I_n$.

(b) On a
$$I_0 = \int_0^{+\infty} e^{-\frac{x^2}{2}} dx = \frac{1}{2} \int_{-\infty}^{+\infty} e^{-\frac{x^2}{2}} dx = \frac{\sqrt{2\pi}}{2} \int_{-\infty}^{+\infty} \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} dx$$

Comme la fonction de densité de la loi normale centrée réduite $x\mapsto \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}}$ vérifie $\int_{-\infty}^{+\infty}\frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}}dx=1$, alors $I_1=\frac{\sqrt{2\pi}}{2}=\sqrt{\frac{\pi}{2}}$.

(c) •
$$I_1 = \int_0^{+\infty} xe^{-\frac{x^2}{2}} = \left[-e^{-\frac{x^2}{2}}\right]_0^{+\infty} = 1.$$

• Par réccurence, en utilisant la relation $I_{n+2}=(n+1)I_n$, on montre que, $\forall n\geq 1$ $I_{2n}=\sqrt{\frac{\pi}{2}}\frac{(2n)!}{2^n n!}$ et

 $I_{2n+1} = 2^n n!$

③ Soit g la fonction définie pour tout réel x par : $g(x) = \begin{cases} g_1(x) & \text{si } x \geq 0, \\ 0 & \text{si } x < 0. \end{cases}$

(a)

- On a g est continue sur \mathbb{R} ,
- g est positive sur \mathbb{R} ,
- Comme g est nulle sur $]-\infty,0]$ et g_1 est intégrable sur $[0,+\infty[$, alors g est intégrable sur $\mathbb R$ et on a

$$\int_{-\infty}^{+\infty} g(x)dx = \int_{0}^{+\infty} g_{1}(x)dx = I_{1} = 1$$

Alors q est une densité de probabilité.

(b) • Comme $x \mapsto xg(x)$ est nulle sur $]-\infty,0]$ et $x \mapsto xg(x) = xg_1(x) = g_2(x)$ est intégrable sur $[0,+\infty[$, alors $x \mapsto xg(x)$ est intégrable sur \mathbb{R} , par suite X admet une espérance et on a

$$\mathbb{E}(X) = \int_{-\infty}^{+\infty} x g(x) dx = \int_{0}^{+\infty} x g_1(x) dx = \int_{0}^{+\infty} g_2(x) dx = I_2 = \sqrt{\frac{\pi}{2}}$$

• Comme $x \mapsto x^2 g(x)$ est nulle sur $]-\infty,0]$ et $x \mapsto x^2 g(x) = x^2 g_1(x) = g_3(x)$ est intégrable sur $[0,+\infty[$, alors $x \mapsto x^2 g(x)$ est intégrable sur \mathbb{R} , par suite X^2 admet une espérance et on a

$$\mathbb{E}(X^2) = \int_{-\infty}^{+\infty} x g(x) dx = \int_{0}^{+\infty} x^2 g_1(x) dx = \int_{0}^{+\infty} g_3(x) dx = I_3 = 2I_1 = 2$$

Puisque X^2 admet une espérance, alors X admet une variance et on a

$$\mathbb{V}(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = 2 - \frac{\pi}{2} = \frac{4 - \pi}{2}$$

(c) Soit $x \in \mathbb{R}$,

• $G(x) = \mathbb{P}(Y \le x) = \mathbb{P}(X^2 \le x)$.

Si x < 0, alors $(X^2 \le x) = \emptyset$, d'où G(x) = 0.

Si $x \ge 0$, alors $(X^2 \le x) = (-\sqrt{x} \le X \le \sqrt{x})$, donc

$$G(x) = \int_{-\sqrt{x}}^{\sqrt{x}} g(t)dt = \int_{-\infty}^{\sqrt{x}} g(t)dt - \int_{-\infty}^{\sqrt{x}} g(t)dt = F(\sqrt{x}) - F(-\sqrt{x})$$

Comme g est nulle sur $]-\infty,0],$ alors $F(-\sqrt{x})=\int_{-\infty}^{-\sqrt{x}}g(t)dt=0,$ par suite $G(x)=F(\sqrt{x})$

On conclut, alors $G(x) = \begin{cases} F(\sqrt{x}) & si \ x \ge 0 \\ 0 & si \ x < 0 \end{cases}$

• On a g est continue sur \mathbb{R} , alors F est de classe C^1 sur \mathbb{R} ,

 $\textbf{Comme} \ G(x) = F(\sqrt{x}) \underset{x \to 0^+}{\rightarrow} F(0) = \int_0^{+\infty} g(t) dt = 0, \ \textbf{car} \ g \ \textbf{est nulle sur} \] - \infty, 0] \ \textbf{et} \ G(x) \underset{x \to 0^-}{\rightarrow} 0$

d'où G est continue en 0, par suite G continue sur \mathbb{R} .

Puisque $u \mapsto \sqrt{u}$ est de classe C^1 sur $]0, +\infty[$, alors $x \mapsto F(\sqrt{x})$ est de classe C^1 sur $]0, +\infty[$, par suite G est de classe C^1 sur $\mathbb{R} \setminus \{0\}$.

Par suite Y est est une variable à densité.

 \bullet La fonction de densité de Y est donnée par :

$$g_Y(x) = \begin{cases} (F(\sqrt{x}))' & si \ x > 0 \\ 0 & si \ x \le 0 \end{cases} = \begin{cases} \frac{1}{2\sqrt{x}} g(\sqrt{x}) & si \ x > 0 \\ 0 & si \ x \le 0 \end{cases} = \begin{cases} \frac{1}{2} e^{-\frac{1}{2}x} & si \ x > 0 \\ 0 & si \ x \le 0 \end{cases}$$

C'est la fonction de densité de la loi exponentielle de paramètre $\lambda = \frac{1}{2}$, ainsi Y suit la loi exponentielle de paramètre $\lambda = \frac{1}{2}$

de paramètre $\lambda = \frac{1}{2}$ Par suit $\mathbb{E}(X) = \frac{1}{\lambda} = 2 \boxtimes$

- Fonctions génératrices —————

Solution de l'exercice M22 Retour à l'énoncé

Pour $k \in [1, n]$, on note X_k le numéro du k-ième tirage.

On a $S_n = \sum X_k$, comme les tirages avec remise, alors les variables aléatoires $X_1,...,X_n$ sont indépendantes

et de meme loi, alors pour tout $t \in]-1,1[,G_{S_n}(t)=\prod^n G_{X_k})(t)=(G_{X_1}(t))^n$.

La loi de X_1 est donnée par :

i	0	1	2
$\mathbb{P}(X_1 = i)$	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

Pour tout
$$t \in]-1,1[,G_{X_1}(t)=\sum_{i=0}^2\mathbb{P}(X_1=i)t^i=\frac{1}{4}+\frac{1}{2}t+\frac{1}{4}t^2=\left(\frac{t}{2}+\frac{1}{2}\right)^2, \text{ alors } G_{S_n}(t)=\left(\frac{t}{2}+\frac{1}{2}\right)^{2n}=\left((1-\frac{1}{2})t+\frac{1}{2}\right)^{2n},$$
 c'est la fonction génératrice de la loi binomiale de paramètre $(2n,\frac{1}{2}),$ d'où $S_n \sim \mathcal{B}(2n,\frac{1}{2})$

Solution de l'exercice №23 Retour à l'énoncé

Comme $X_1, X_2, ..., X_n$ des variables aléatoires indépendantes, alors pour tout $t \in \mathbb{R}$,

$$G_{X_1+X_2+\ldots+X_n}(t) = \prod_{k=1}^n G_{X_k}(t) = \prod_{k=1}^n e^{\lambda_k(t-1)} = e^{\sum_{k=1}^n \lambda_k(t-1)}$$

On trouve la fonction génératrice de la loi de Poisson de paramètre $\lambda = \sum_{k=0}^{\infty} \lambda_k > 0$, comme la fonction

génératrice caractérise la loi, alors $X_1+X_2+...+X_n$ suit la loi de Poisson de paramètre $\sum \lambda_k$ \boxtimes

Inégalités et théorèmes limites

Solution de l'exercice №24 Retour à l'énoncé

① Comme $X(\Omega) = \mathbb{N}^*$, alors X est positive, or X admet une espérance et $\mathbb{E}(X) = \frac{1}{\underline{\mathbb{I}}} = n$, par l'inégalité de Markov, on a

$$\mathbb{P}(X \geqslant n^2) \leqslant \frac{\mathbb{E}(X)}{n^2} = \frac{1}{n}$$

② On peut remarquer que $(X \ge 2n) = (|X - n| \ge n) = (|X - \mathbb{E}(X)| \ge n)$, car X est positive. Or X admet une variance et $\mathbb{V}(X) = \frac{1 - \frac{1}{n}}{(\frac{1}{n})^2} = n^2 - n$, par l'inégalité de Bienaymé-Tchebychev, on obtient

$$\mathbb{P}(X \geqslant 2n) = \mathbb{P}(|X - \mathbb{E}(X)| \ge n) \leqslant \frac{\mathbb{V}(X)}{n^2} = 1 - \frac{1}{n}$$

Solution de l'exercice Nº 25 Retour à l'énoncé

Comme X_n et X sont à valeurs dans \mathbb{N} , il suffit de montrer que pour tout $k \in \mathbb{N}, \mathbb{P}(X_n = k) \xrightarrow{n \to +\infty} \mathbb{P}(X = k)$.

en effet :
$$\mathbb{P}(X_n=k) = \binom{n}{k} p_n^k (1-p_n)^{n-k} = \frac{n(n-1)\cdots(n-k+1)}{k!} p_n^k (1-p_n)^{n-k} \underset{n \to +\infty}{\sim} \frac{n^k}{k!} p_n^k (1-p_n)^{n-k} \underset{n \to +\infty}{\sim} \frac{\lambda^k}{k!} (1-p_n)^{n-k}$$
Comme $(1-p_n)^{n-k} = e^{(n-k)\ln(1-p_n)} = e^{-(n-k)p_n\frac{\ln(1-p_n)}{-p_n}} \underset{n \to +\infty}{\to} e^{-\lambda}$, car $np_n \underset{n \to +\infty}{\to} \lambda$ et $p_n \underset{n \to +\infty}{\sim} \frac{\lambda}{n} \underset{n \to +\infty}{\to} 0$
Par suite $\frac{\lambda^k}{k!} (1-p_n)^{n-k} \underset{n \to +\infty}{\to} \frac{\lambda^k}{n} e^{-\lambda} = \mathbb{P}(X=k)$, ainsi $\mathbb{P}(X_n=k) \underset{n \to +\infty}{\to} \mathbb{P}(X=k) \boxtimes$

Solution de l'exercice Nº 26 Retour à l'énoncé

Comme $(X_n)_{n\geqslant 1}$ est une suite de variables aléatoires indépendantes de meme loi admettant un moment d'ordre 2 et $\mathbb{E}(X_n)=1$, $\mathbb{V}(X_n)=1$, par le théorème central limite, $\left(\frac{X_1+\ldots+X_n-n}{\sqrt{n}}\right)_{n\geq 1}$ converge en

loi vers N où N suit la loi normale centrale réduite. En particulier $\mathbb{P}\left(\frac{X_1+\ldots+X_n-n}{\sqrt{n}}\leq 0\right)\underset{n\to+\infty}{\to}\mathbb{P}(N\leq 0)=\frac{1}{2},$ car f_N est paire.

D'autre part $X_1 + ... + X_n$ suit la loi de poisson de paramètre n,

$$\mathbf{donc} \ \mathbb{P}\left(\frac{X_1 + \ldots + X_n - n}{\sqrt{n}} \le 0\right) = \mathbb{P}(X_1 + \ldots + X_n \le n) = \sum_{k=0}^n e^{-n} \frac{n^k}{k!} = e^{-n} \sum_{k=0}^n \frac{n^k}{k!} \boxtimes \mathbb{P}\left(\frac{X_1 + \ldots + X_n - n}{\sqrt{n}} \le 0\right) = \mathbb{P}(X_1 + \ldots + X_n \le n) = \sum_{k=0}^n e^{-n} \frac{n^k}{k!} = e^{-n} \sum_{k=0}^n \frac{n^k}{k!} \boxtimes \mathbb{P}\left(\frac{X_1 + \ldots + X_n - n}{\sqrt{n}} \le 0\right) = \mathbb{P}(X_1 + \ldots + X_n \le n) = \sum_{k=0}^n e^{-n} \frac{n^k}{k!} = e^{-n} \sum_{k=0}^n \frac{n^k}{k!} = e^{$$